Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-9 of 9
Austenite
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 71-79, October 21–24, 2019,
Abstract
View Papertitled, Microstructural Evaluation in Heat-Affected Zone of 9Cr-3W-3Co-Nd-B Heat-Resistant Steel
View
PDF
for content titled, Microstructural Evaluation in Heat-Affected Zone of 9Cr-3W-3Co-Nd-B Heat-Resistant Steel
A newly developed ferritic heat-resistant steel; 9Cr-3W-3Co-Nd-B steel has higher creep rupture strength both in the base metal and welded joints than the conventional high-Cr ferritic heat-resistant steels. The creep rupture strengths of 9Cr-3W-3Co-Nd-B steel welded joints were below the lower limit of the base metal in long-term creep stage more than 20,000 hours. The creep rupture position was heat-affected zone (HAZ) from 1.0 to 1.5 mm apart from the fusion line on the welded joint specimen ruptured at 34,966 hours. The equiaxed subgrains and coarsened precipitates were observed in HAZ of the ruptured specimen. In order to clarify the creep fracture mechanism of the welded joints, the microstructures of HAZ were simulated by heat cycle of weld, then observed by EBSD analysis. Fine austenite grains formed along the prior austenite grain boundaries in the material heated just above A C3 transformation temperature, however there were no fine grains such as conventional steel welded joints. The prior austenite grain boundaries were unclear in the material heated at 1050 °C. The creep rupture life of the material heated at just above A C3 transformation temperature exceeded the lower limit of base metal and there was no remarkable degradation, although it was shorter than the other simulated materials. It is, therefore, concluded that the creep fracture of 9Cr-3W-3Co-Nd-B steel welded joint in long-term stage occurred at HAZ heated at from just above A C3 transformation temperature to 1050 °C. It is speculated that the fine austenite grains formed along the prior austenite grain boundaries and inhomogeneous microstructures cause the coarsening precipitates and recovery of lath structure during long-term creep deformation.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 156-161, October 21–24, 2019,
Abstract
View Papertitled, Microstructure Evolution in a High Boron Ferritic Steel during Creep at 650°C
View
PDF
for content titled, Microstructure Evolution in a High Boron Ferritic Steel during Creep at 650°C
Microstructure change during creep at 650°C has been examined for a high-B 9%Cr steel by FIB-SEM serial sectioning 3D observation, Nano-SIMS, SEM, EBSD and TEM. The precipitates formed in the steel were M 23 C 6 , Laves phase, and a quite small amount of MX. For as-tempered steel, precipitation of M 23 C 6 on the prior austenite grain boundaries was clearly found, while precipitation of the Laves phase was not confirmed during tempering. The volume fraction of the Laves phase gradually increased with elapsed time, while M 23 C 6 appeared to increase once and decrease afterward, based on the comparison between the 2,754 h ruptured sample and the 15,426 h ruptured sample. Nano-SIMS measurements have revealed that B segregates on the prior austenite grain boundaries during normalizing, and it dissolves into M 23 C 6 .
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 174-184, October 21–24, 2019,
Abstract
View Papertitled, Influence of Microstructure on the Creep Properties of Grade P22 Steel
View
PDF
for content titled, Influence of Microstructure on the Creep Properties of Grade P22 Steel
The creep strength and ductility of Grade P22 steel (2¼ Cr) was measured at 600°C under standard uniaxial tensile conditions at 150MPa. Test specimens were prepared by solution heat treatment at austenitization temperatures ranging from 900°C - 1200°C followed by normalization at 900°C before continuous air cooling to room temperature. In addition to specimens tested in the solution treated state, creep tests were also performed after tempering. The variable austenitization temperatures gave rise to different prior austenite grain (PAG) sizes, which in turn influenced the crystallographic packet and block boundary misorientation angle distribution. The latter parameters were measured using electron backscattered diffraction which also allowed partial reconstruction of the PAG boundaries. The time to creep failure at 600°C increased as function of PAG size up to approximately 70µm, but significantly decreased when the average prior austenite grain size measured approximately 108 µm. However, the minimum creep rate decreased even up to the largest PAG size with corresponding decrease in creep ductility. The stability of the crystallographic packet and block boundaries influences the high strength-low ductility for the large PAGs in comparison to the dominant effect of PAG boundaries at the smallest grain size where extensive recovery and recrystallization reduces creep strength.
Proceedings Papers
Creep Behavior and Microstructure of a Prospective Re-Containing 10%Cr-3%Co-3%W Martensitic Steel
Free
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 217-226, October 21–24, 2019,
Abstract
View Papertitled, Creep Behavior and Microstructure of a Prospective Re-Containing 10%Cr-3%Co-3%W Martensitic Steel
View
PDF
for content titled, Creep Behavior and Microstructure of a Prospective Re-Containing 10%Cr-3%Co-3%W Martensitic Steel
9-10%Cr-3%Co martensitic steels are the prospective materials for elements of boilers, tubes and pipes for fossil power plants which are able to work at ultra-supercritical parameters of steam (T=620-650°C, P=25-30 MPa). The effect of creep on the microstructure of the 10 wt.%Cr-3Co- 3W-0.2Re martensitic steel was investigated in the condition of 650°C and an applied stress of 140 MPa, time to rupture was more than 8500 h. Previously, this steel was subjected to the normalizing at 1050°C and tempering at 770°C. This heat treatment provided the hierarchical tempered martensite lath structure with the mean size of prior austenite grains of 59 μm and with high dislocation density (2×10 14 m -2 ) within martensitic laths. Boundary M 23 C 6 and M 6 C carbides and randomly distributed within matrix Nb-rich MX carbonitrides were detected after final heat treatment. The addition of Re in the steel studied positively affected creep at 650°C/140 MPa and stabilized the tempered martensite lath structure formed during 770°C-tempering. The formation of the subgrains in the gage section was accompanied by the coarsening of M 23 C 6 carbides and precipitations of Laves phase with fine sizes during creep. No depletion of Re and Co from the solid solution during creep was revealed whereas W content decreased from 3 to 1 wt.% for first 500 h of creep. Reasons of improved creep as well as mechanisms of grain boundary pinning by precipitates are discussed.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 227-234, October 21–24, 2019,
Abstract
View Papertitled, On the Precipitation of the Laves Phase Particles in a Martensitic 10% Cr-3% Co-3% W-0.2% Re Steel during Creep at 650°C
View
PDF
for content titled, On the Precipitation of the Laves Phase Particles in a Martensitic 10% Cr-3% Co-3% W-0.2% Re Steel during Creep at 650°C
The size and distribution of the Laves phase particles in a 9.85Cr-3Co-3W-0.13Mo-0.17Re- 0.03Ni-0.23V-0.07Nb-0.1C-0.002N-0.008B steel subjected to creep rupture test at 650°C under an applied stresses of 160-200 MPa with a step of 20 MPa were studied. After heat treatment consisting of normalizing of 1050°C and tempering of 770°C, M 23 C 6 and Fe 3 W 3 C carbides with the mean sizes of 67±7 and 40±5 nm, respectively, were revealed along the boundaries of prior austenite grains and martensitic laths whereas round NbX carbonitrides were found within martensitic laths. During creep metastable Fe 3 W 3 C carbides dissolved and the stable Laves phase particles precipitated; volume fraction of Laves phase increases with time. The Laves phase particles nucleated on the interfacial boundaries Fe 3 W 3 C/ferrite during first 100 h of creep and provided effective stabilization of tempered martensitic lath structure until their mean size less than 150 nm.
Proceedings Papers
Power Austenite- A Novel σ-Phase Hardened High Temperature Alloy for 700 °C (1292 °F) Fired Boilers
Free
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 304-309, October 11–14, 2016,
Abstract
View Papertitled, Power Austenite- A Novel σ-Phase Hardened High Temperature Alloy for 700 °C (1292 °F) Fired Boilers
View
PDF
for content titled, Power Austenite- A Novel σ-Phase Hardened High Temperature Alloy for 700 °C (1292 °F) Fired Boilers
The article gives a brief overview of the newly developed austenitic material “Power Austenite”. The microstructure of the Power Austenite is characterized by grain boundary strengthening with boron stabilized M23(C,B)6 and secondary Nb(C,N) in combination with sigma phase and Nb(C,N) as the major grain strengthening precipitates. The material shows a significant creep strength at 700 °C (1292 °F) and 650 °C (1202 °F) as well as fireside corrosion resistance which makes it a possible candidate for 700 °C (1292 °F) power plants.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 610-621, October 11–14, 2016,
Abstract
View Papertitled, The Influence of Prior Austenite Grain Size on Fatigue Crack Growth Threshold of welds in Cr-Mo-V Steel Components
View
PDF
for content titled, The Influence of Prior Austenite Grain Size on Fatigue Crack Growth Threshold of welds in Cr-Mo-V Steel Components
The fatigue crack propagation thresholds of SAW weld metal of 25Cr2Ni2MoV simulating product of fossil and nuclear power low pressure turbine rotor at different stress ratios are tested. There is a big dispersity of the test results, even at the same stress ratio. The double logarithm curves of the fatigue crack growth rate and stress intensity factor range are researched. The difference of critical points between stable propagation region and near-threshold region in different specimens is found to be an important cause to the dispersity. Their locations in the specimens can be determined by the method of backward inference. After the observation of the microstructures around the critical points, a good correspondence between the size of prior austenite grain and the maximum size of monotonic plastic zone on the crack tip is confirmed. The difference of the critical points at the same stress ratio is caused by the inhomogeneous microstructures. So the inhomogeneous microstructures in the multi-pass and multi-layer weld metal contribute to the dispersity of the experimental threshold values.
Proceedings Papers
AM-EPRI2004, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fourth International Conference, 1280-1298, October 25–28, 2004,
Abstract
View Papertitled, The Effects of Carbon and Austenite Stabilizing Elements (Co, Cu, Ni and Mn) on the Microstructural Changes and the Creep Rupture Strength in 9-12 % Cr Ferritic Heat Resistant Steels
View
PDF
for content titled, The Effects of Carbon and Austenite Stabilizing Elements (Co, Cu, Ni and Mn) on the Microstructural Changes and the Creep Rupture Strength in 9-12 % Cr Ferritic Heat Resistant Steels
This study examines the influence of carbon and austenite stabilizing elements (Ni, Mn, Co, Cu) on Laves phase precipitation, Fe 2 W formation, and creep rupture strength (CRS) in 9-12% Cr steels at 600-700°C. Nickel and manganese had minimal impact on Laves phase and coarse carbide formation up to 1% content. While cobalt increased Laves phase fraction at 650°C, it did not improve long-term CRS and even caused a rapid decrease in short-term CRS. Copper, on the other hand, promoted the precipitation of fine Cu-rich particles that acted as nucleation sites for Laves phase and M 23 C 6 carbide. This resulted in a different needle-like Laves phase morphology compared to the globular type observed in nickel and cobalt alloys, leading to improved CRS in the copper alloy. Increasing carbon content from 0.1% to 0.2% effectively suppressed Laves phase formation, as confirmed by Thermo-Calc calculations. Notably, for cobalt alloys with higher tungsten content, higher carbon content (0.09% to 0.19%) improved CRS at 650°C, whereas the opposite effect was observed in nickel and nickel-manganese alloys. Copper alloys maintained improving CRS trends even with increased carbon, leading to the overall best CRS performance among the tested alloys with 0.2% carbon.
Proceedings Papers
AM-EPRI2004, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fourth International Conference, 1299-1312, October 25–28, 2004,
Abstract
View Papertitled, Transmission Electron Microscopy and Boron Trace Autoradiography Investigation of Precipitates in Creep Deformed 9% Chromium Steels
View
PDF
for content titled, Transmission Electron Microscopy and Boron Trace Autoradiography Investigation of Precipitates in Creep Deformed 9% Chromium Steels
The microstructures of two 9% chromium steels, P92 (30 ppm B) and B2 (100 ppm B), after heat treatment and after long-term creep deformation at 600°C were quantitatively investigated by means of transmission electron microscopy and boron trace autoradiography. The aim of the study was to show the boron distribution and identify the influence of boron on precipitation processes taking place in both steels during long-term creep exposure. The incorporation of boron into the M 23 C 6 precipitates in both steels was demonstrated. In P92 steel (30 ppm B), boron was distributed preferentially on prior austenite grain boundaries and hardly visible on the sub-grain boundaries. In the steel B2 doped with 100 ppm B, boron was densely distributed on prior austenite grain- and sub-grain boundaries as well as within martensite laths. Quantitative TEM metallography and boron trace autoradiography investigation showed that boron retarded the growth of M 23 C 6 by forming borocarbides M 23 (C, B) 6 , thereby significantly improving the creep rupture strength of boron doped 9% chromium steels.