Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Subjects
Article Type
Volume Subject Area
Date
Availability
1-1 of 1
Mercury
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
AM-EPRI2007, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fifth International Conference, 82-91, October 3–5, 2007,
Abstract
View Papertitled, UltraGen: a Proposed Initiative by EPRI to Advance Deployment of Ultra-Supercritical Pulverized Coal Power Plant Technology with Near-Zero Emissions and CO 2 Capture and Storage
View
PDF
for content titled, UltraGen: a Proposed Initiative by EPRI to Advance Deployment of Ultra-Supercritical Pulverized Coal Power Plant Technology with Near-Zero Emissions and CO 2 Capture and Storage
UltraGen is an initiative proposed by EPRI to accelerate the deployment and commercialization of clean, efficient, ultra-supercritical pulverized coal (USC PC) power plants that are capable of meeting any future CO 2 emissions regulations while still generating competitively-priced electricity. In addition to reducing CO 2 , these advanced systems will have to achieve near-zero emissions of criteria pollutants (SO 2 , NO X , and filterable and condensable particulate) and hazardous air pollutants such as mercury.