Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-5 of 5
Boron
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 914-923, October 21–24, 2019,
Abstract
View Paper
PDF
Titanium alloys are expected to be used as heat-resisting structural materials in the airplane and automotive industries. In this study, the creep properties of near-α Ti alloys consisting of a lamellar microstructure were studied. Ti–8.5wt%Al–8.0wt%Zr–2wt%Mo–1wt%Nb–0.15wt%Si alloy (alloy code, TKT34) and an alloy with 0.1 wt% of added boron (alloy code, TKT35) were used in this study. An ingot was hot forged at a temperature of 1,403 K and hot rolled (caliberrolling) at a temperature of 1,273 K to a reduction rate of approximately 90%. It then underwent solution treatment in a β single-phase region followed by air cooling. Finally, it was subjected to aging treatment for 28.3 ks at a temperature of 863 K and then air-cooled. Two solution treatment conditions were applied: a time of 1.8 ks at a temperature of 1,323 K (high temperature/short time (HS)) and a time of 3.6 ks at a temperature of 1,223 K (low temperature/long time (LL)). The average grain size of the prior β grains showed a tendency of the solution treatment temperature being low and the boron-added alloys tending to be small. The length and thickness of the lamellar of these alloys shortened or thinned owing to the addition of boron and at a low solution treatment temperature. The creep tests were carried out at an applied stress of 137 MPa and a temperature of 923 K in air. The creep rupture life of these alloys was excellent, in order of TKT35 (LL) < TKT34 (LL) < TKT35 (HS) ≦ TKT34 (HS). Therefore, the creep rupture life of these alloys was shown to be superior under the HS solution treatment condition as compared to the LL solution treatment condition. However, the minimum or steady-state strain rate of these alloys became slower in order of TKT 35 (LL)> TKT34 (LL)> TKT34 (HS) ≧ TKT35 (HS). The creep properties depended on the microstructure of the alloys.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 568-580, October 11–14, 2016,
Abstract
View Paper
PDF
Martensitic 9Cr steels have been developed which are strengthened by boron in order to stabilize the microstructure and improve their long-term creep strength. Boron plays a key role in these steels by stabilising the martensitic laths by decreasing the coarsening rate of M 23 C 6 carbides, which act as pinning points in the microstructure. In this work two modified FB2 steel forgings are compared. Both forgings have similar compositions but one underwent an additional remelting process during manufacture. Creep tests showed that this additional processing step resulted in a significant increase in time to failure. In order to investigate the effect of the processing route on microstructural evolution during aging and creep, a range of advanced electron microscopy techniques have been used including ion beam induced secondary electron imaging and High Angle Annular Dark Field (HAADF) imaging in the Scanning Transmission Electron Microscope. These techniques have enabled the particle population characteristics of all the second phase particles (M 23 C 6 , Laves phase, BN and MX) to be quantified for materials from both forging processes. These quantitative data have enabled a better understanding of how the processing route affects the microstructural evolution of FB2 steels.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 939-950, October 11–14, 2016,
Abstract
View Paper
PDF
Despite the significant progress achieved in power generation technologies in the past two decades, finding effective solutions to further reduce emissions of harmful gases from thermal power plant still remains the major challenge for the power generation industry as well as alloy material developers. In the European material programmes COST 522 and COST 536, based on the existing 9-12%Cr creep resisting steels, an advanced 9%Cr-Mo martensitic alloy, C(F)B2 (GX13CrMoCoVNbNB9-2-1) alloy has been developed. By modification through alloying of boron and cobalt and together with other micro-adjustment of the composition, C(F)B2 alloys has showed very encouraging properties. The current paper summaries the development and evaluation of the matching filler metals for C(F)B2 grade. The design of the filler metal composition is discussed and comparison is made with the parent materials in respect to the alloy additions and microstructure. The mechanical properties of the weld metals at ambient temperature are examined. Creep properties of both undiluted weld metals and cross-weld joints are examined through stress rupture test and the data are evaluated and compared with those of the base alloy and other existing 9%Cr-Mo creep resisting steels.
Proceedings Papers
AM-EPRI2010, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Sixth International Conference, 342-360, August 31–September 3, 2010,
Abstract
View Paper
PDF
Research conducted under European COST programs has demonstrated the beneficial role of boron in enhancing the microstructural stability and creep performance of new martensitic steels. The FB2 steel (a 10%Cr steel containing Co and B, without W) emerged as the most promising candidate and was successfully scaled up to a full industrial rotor component by Società delle Fucine. Extensive creep testing, now reaching 50,000 hours, indicates an improvement of 15-20 MPa over Grade 92 at 600°C for 100,000 hours. STEM and X-ray analysis of long-term aged specimens confirmed that boron significantly enhances precipitate stability compared to Grade 91 and 92 steels, validating its role as a creep-strengthening element and stabilizer of carbides and martensitic structure.
Proceedings Papers
AM-EPRI2007, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fifth International Conference, 809-817, October 3–5, 2007,
Abstract
View Paper
PDF
Achieving high temperature creep strength while maintaining rupture ductility in weld metal for austenitic stainless steel weldments has always been challenging. In the late 1940's and early 1950's, independent work in both Europe and the USA resulting in what is known today as the 16-8-2 (nominally16% chromium -8% nickel -2% molybdenum) stainless steel weld metal. Philo 6 and shortly thereafter at Eddystone used the alloy to construct the first supercritical boilers and piping in the USA. Concurrent with domestic boiler and piping fabrication, the US Navy was also using this material for similar supercritical applications. Over the decades, enhanced performance has evolved with variations of the basic composition and by adding specific residual elements. Controlled additions of P, B, V, Nb and Ti have been found to greatly enhance elevated temperature as well as cryogenic behavior. The history of these developments, example compositions and areas of use as well as mechanical property results are presented.