Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-1 of 1
X-ray emission spectroscopy
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 1402-1407, October 21–24, 2019,
Abstract
View Papertitled, Effect of Carbon in Solution on Phase Equilibria among β/α(α 2 )/γ Phases in TiAl Alloys Using Soft X-Ray Emission Spectroscopy
View
PDF
for content titled, Effect of Carbon in Solution on Phase Equilibria among β/α(α 2 )/γ Phases in TiAl Alloys Using Soft X-Ray Emission Spectroscopy
Interstitial carbon (C) in β-Ti, α-Ti, α 2 -Ti 3 Al and γ-TiAl phases present in the γ-TiAl alloys with and without substitutional elements (M: transition element) is quantitatively analyzed using soft X-ray emission spectroscopy (SXES), in order to reveal the effect of solute carbon on the phase equilibria. SXES for carbon analysis was used and the peak intensity of the second reflection of carbon Kα is analyzed using the fully homogenized sample having different C content under the optimum condition to make the accurate calibration curves. The obtained calibration curve is in an accuracy of ± 0.07 at. % C. In all heat treated alloys, no carbide is observed. In Ti-Al binary system, the α+γ phase region shifts toward higher Ti side, and the volume fraction of γ phase increases slightly with the carbon addition. In all system, carbon preferentially partitions into the α phase, followed by less partitioning in the γ and β phases in order. The carbon content in the β phase remains unchanged of almost 0.05 at. % regardless of carbon addition in Ti-Al-V system and the partition coefficient of carbon between the α and γ phases becomes larger in Ti-Al-V system than that in TiAl binary system.