Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-18 of 18
Performance testing
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 304-315, October 15–18, 2024,
Abstract
View Paper
PDF
This paper discusses the design of a prototype for accurately inspecting the degree of wall thinning in boiler tubes, which plays a critical role in power plants. The environment in power plants is characterized by extreme conditions such as high temperatures, high pressure, and ultrafine dust (carbides), making the maintenance and inspection of boiler tubes highly complex. As boiler tubes are key components that deliver high-temperature steam, their condition critically affects the efficiency and safety of the power plant. Therefore, it is essential to accurately measure and manage the wall thinning of boiler tubes.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 418-428, October 15–18, 2024,
Abstract
View Paper
PDF
Recently, single-phase flow accelerated corrosion (FAC) has been found extensively in Thailand, especially in single shaft combined cycle power plant heat recovery steam generators, the design of which are compact and cannot be easily accessed for service. This takes at least one week for repairing and costs at least half a million dollar per shutdown. In this paper, the investigation of the single-phase FAC in a high-pressure economizer of a combined cycle power plant is demonstrated. Water chemical parameters such as pH and dissolved oxygen are reviewed, the process simulation of the power plant is performed to capture risk areas for the FAC. A computational fluid dynamics study of the flow is done to understand the flow behavior in the damaged tubes next to an inlet header. Some modifications such as flow distributor installation and tube sleeve installation were performed for short-term solutions. Moreover, new economizer headers are designed with low alloy material to mitigate the problem. The installation process of the newly fabricated headers is finally described. The findings in this paper serve as a guideline for FAC risk assessment, FAC investigation and mitigation, and service in compact heat recovery steam generators.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 830-842, October 15–18, 2024,
Abstract
View Paper
PDF
Tenaris' High Oxidation Resistance (THOR) 115, or T115, is a creep strength-enhanced ferritic (CSEF) steel introduced in the past decade. It is widely used in constructing high-efficiency power plants and heat recovery steam generators (HRSGs) due to its superior steam oxidation resistance and long-term microstructural stability, making it a viable alternative to stainless steels at elevated steam temperatures. The creep damage tolerance of T115 has been recently validated under ASME BPVC CC 3048 guidelines, which address safety concerns related to creep damage in boiler components. Testing confirmed T115's consistent creep damage-tolerant behavior, with cross-weld creep behavior reassessed through extensive metallographic examination of specimens from a 1.5-inch thick pipe girth weld, providing insights into creep damage distribution and hardness, and its relative performance compared to Grade 91 CSEF steel.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 1228-1239, October 15–18, 2024,
Abstract
View Paper
PDF
The creep strength of the base metals and welded joints of ASME Grade 91 type steel under actual service conditions was investigated using long-term used materials in this study. Creep tests were conducted on the materials used for hot reheat or main steam piping at power plants. The remaining creep life of each material under actual service conditions was evaluated using the Larson-Miller parameter for the test result. Then, the creep life of each material under the service condition was estimated as a summation of the service time at the plants and the remaining creep life. The estimation results were useful for examining the validity of the life evaluation formula in the long-term region because it is extremely difficult to obtain creep rupture data under such conditions owing to the long test duration. The estimated creep lives were compared with creep life evaluation curves, which were regulated for Grade 91 type steel in Japan. Regarding the base metals, the estimation results suggest that Grade 91 pipe-type steel tends to exhibit a shorter life than the 99% confidence lower limit of the evaluation curve of the material. This finding indicated that the life evaluation formula for the Grade 91 type steel base metals should be reviewed. On the other hand, the estimation results suggest that the welded joints of Grade 91 type steel generally exhibit a longer life than the 99% confidence lower limit of the evaluation curve of the material, indicating that there is no need to review the life evaluation formula for the Grade 91 type steel welded joints.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 1269-1278, October 15–18, 2024,
Abstract
View Paper
PDF
Gas turbine blades are operated in a high temperature and a high pressure. In order to cope with that harsh condition, the blades are made of Nickel based superalloys which show excellent performance in such environment. Manufacturers of the blades usually provide the standards for the blade inspection and replacement. According to their guide, the blades are replaced after 3 times of operations and 2 times of refurbishments. Howsoever, purchase the new blades is always costly and burdensome to the power plant owners hence, the assessment of the blade lifespan and the rejuvenation of the degraded blades are indeed crucial to them. In this study, the optimal rejuvenation conditions for gas turbine blades were derived and verified. In addition to that, the creep durability was evaluated based on the actual blade inspection interval. LCF tests have been carried out on the rejuvenated blade and the result was compared with the fatigue life of the new blades. In order to secure the safety of the rejuvenated blade during operation, a heat flow analysis was performed to simulate the operating conditions of the gas turbine during operation, and the main stress and strain areas were investigated through the analysis results. And then LCF and creep considering the actual operating conditions were evaluated. The calculated life of fatigue and creep life is compared to the hot gas path inspection interval. For the rejuvenated blades, the creep life and the LCF interval were reviewed based on the temperature, stress, and strain acquired by computational analysis. The creep life was calculated as 59,363 hours by LMP curve, and the LCF was calculated as 2,560 cycles by the Manson Coffin graph.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 1320-1330, October 15–18, 2024,
Abstract
View Paper
PDF
The localized creep failure in the heat-affected zone (HAZ) of Grade 91 steel weldments has been identified as one of the most important factors causing significantly shortened service lifetime and structural integrity issues of welded components in advanced fossil and nuclear power plants. To conduct a reliable creep lifetime assessment, a new engineering assessment approach has been developed by incorporating the experimentally determined local properties of the heterogeneous HAZ. By creep testing a purposely simulated HAZ specimen with in situ digital image correlation (DIC) technique, the highly gradient creep properties across the HAZ of Grade 91 steel was quantitatively measured. A physical creep cavitation constitutive model was proposed to investigate the local creep deformation and damage accumulation within the heterogeneous HAZ, which takes into account the nucleation of creep cavities and their growth by both grain boundary diffusion and creep deformation. The relationship among the local material property, creep strain accumulation, and evolution characteristic of creep cavities was established. The approach was then utilized to investigate the creep response and subsequent life for an ex-service 9% Cr steel weldment by incorporating the effects of pre-existing damages which developed and accumulated during long-term services. The predicted results exhibited quantitative agreement with the DIC measurement in terms of both nominal/local creep deformation as well as the subsequent life under the test conditions at 650 and 80 MPa.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 370-378, October 21–24, 2019,
Abstract
View Paper
PDF
In response to the strong needs for the life assessment of various components in fossil power plants, studies on Grade 91 and Grade 92 steels have been jointly performed by EPRI and CRIEPI for a last decade. These studies have been covering the effects of load variation (creep- fatigue) and stress multiaxiality as well as the behavior under uniaxial creep conditions. Based on abundant test data accumulated in this period and associated analytical evaluation, approaches based on inelastic strain energy have been developed for accurately assessing creep damage and failure lives under various conditions. The essence of these efforts is presented in this paper.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 783-794, October 21–24, 2019,
Abstract
View Paper
PDF
Modern gas turbines are operated with fuels that are very clean and within the allowances permitted by fuel specifications. However, the fuels that are being considered contain vanadium, sulfur, sodium and calcium species that could significantly contribute to the degradation of components in hot gas flow path. The main potential risk of material degradation from these fuels is “hot corrosion” due to the contaminants listed above combined with alkali metal salts from ambient air. Depending on the temperature regime hot corrosion can damage both TBC coatings and bond coat/substrate materials. Deposit-induced or hot corrosion has been defined as “accelerated oxidation of materials at elevated temperatures induced by a thin film of fused salt deposit”. For the initiation of hot corrosion, deposition of the corrosive species, e.g. vanadates or sulfates, is necessary. In addition to the thermodynamic stability, the condensation of the corrosive species on the blade/vane material is necessary to first initiate and then propagate hot corrosion. Operating temperatures and pressures both influence the hot corrosion damage. The temperature ranges over which the hot corrosion occurs depend strongly on following three factors: deposit chemistry, gas constituents and metal alloy (or bond coating/thermal barrier coating) composition. This paper reports the activities involved in establishing modeling and simulation followed by testing/characterization methodologies in relevant environments to understand the degradation mechanisms essential to assess the localized risk for fuel flexible operation. An assessment of component operating conditions and gas compositions throughout the hot gas paths of the gas turbines, along with statistical materials performance evaluations of metal losses for particular materials and exposure conditions, are being combined to develop and validate life prediction methods to assess component integrity and deposition/oxidation/corrosion kinetics.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 1294-1304, October 21–24, 2019,
Abstract
View Paper
PDF
A new method of creep life assessment was developed to consider heat-to-heat variations of welded joints of materials used in power plants. This paper explains a scheme of the assessment method and also describes an actual implementation of the method for Grade 91 steel. In the method, creep properties of the welded joints are related to those of each base metal because the heat-to-heat variations of welded joints strongly depend on the creep properties of the corresponding base metals. To estimate the creep properties of each base metal of the target pipe, microstructure analyses and small punch creep tests were conducted using small samples cut from the base metals in service, and evaluations were done on the basis of material data base obtained using standard test samples of long-term service exposed pipes. It is expected that the precision of the life assessment of pipes will be significantly improved using the developed method because it can consider the heat-to-heat variations of their materials, which are not considered in existing life assessment methods.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 1305-1313, October 21–24, 2019,
Abstract
View Paper
PDF
700°C advanced ultra-supercritical system and supercritical CO 2 turbine system are developed for high efficiency turbine systems for next generation. This study covered the feasibility of creep life assessment of γ’-Ni 3 (Al,Ti) precipitation strengthened Ni-based superalloy rotor material, TOS1X-2, a modified alloy of UNS N06617 for these systems, based on hardness measurement method. It was found that the hardness of TOS1X-2 was governed by the change in precipitation strengthening and strain hardening during creep. The clear relationship between hardness increase in crept portion and macroscopic creep strain was observed, suggesting that it might be possible to estimate the creep strain or initiation of acceleration from hardness measurement. Microstructure inhomogeneity and microstructure evolutions during creep especially focused on dispersion of creep strain were characterized by EBSD quantitative analysis. It was found that creep strain was accumulated along the grain boundary, while it was relatively absent in coarse grains with low Schmid factor of {111} <110> slip system in fcc structure. The upper limit of hardness scatter band is thought to be important, since it represents the local and critical creep damage of the alloy.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 149-160, October 11–14, 2016,
Abstract
View Paper
PDF
Creep-fatigue lives of nickel-based Alloy 617 and Alloy 740H were investigated to evaluate their applicability to advanced ultrasupercritical (A-USC) power plants. Strain controlled push-pull creep-fatigue tests were performed using solid bar specimen under triangular and trapezoidal waveforms at 700°C. The number of cycles to failure was experimentally obtained for both alloys and the applicability of three representative life prediction methods was studied.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 1206-1219, October 22–25, 2013,
Abstract
View Paper
PDF
In today’s market place power generation plants throughout the world have been trying to reduce their operating costs by extending the service life of their critical machines such as steam turbines and gas turbines beyond the design life criteria. The key ingredient in plant life extension is remaining life assessment technology. This paper will outline remaining life procedures which will incorporate the defect tolerant design concepts applied to the various damage mechanisms such as creep, fatigue, creep-fatigue and stress corrosion cracking. Also other embrittlement mechanisms will also be discussed and how they will influence the life or operation of the component. Application of weld repairs to critical components such as rotors and steam chest casings will be highlighted and how defect tolerant design concept is applied for the repair procedure and the acceptance standard of the nondestructive testing applied. Also highlighted will be various destructive tests such as stress relaxation tests (SRT) which measures creep strength and constant displacement rate test (CDRT) which evaluates fracture resistance or notch ductility. Also shown will be actual life extension examples applied to steam turbine components and weld repairs. Utilization of computer software to calculate fatigue and creep fatigue crack growth will also be presented
Proceedings Papers
AM-EPRI2010, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Sixth International Conference, 504-515, August 31–September 3, 2010,
Abstract
View Paper
PDF
The extrapolation of short-term laboratory test results to predict long-term high-temperature component failure remains challenging, particularly for P91 steel due to its phase transformation during extended service and susceptibility to type IV cracking. While the NSW model successfully predicts creep crack growth bounds using short to medium-term test data (<10,000 hours), recent literature suggests materials may exhibit more brittle behavior and reduced failure strain in longer-term tests. This study examines whether the NSW model, using short-term uniaxial data, can effectively predict these long-term behavioral changes for more accurate service life assessment.
Proceedings Papers
AM-EPRI2010, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Sixth International Conference, 530-553, August 31–September 3, 2010,
Abstract
View Paper
PDF
The paper describes methods for practical high temperature weldment life assessment, and their application to the analysis of notable high energy piping weldment failures and interpretation of cross-weld data. The methods described in the paper are simplified versions of full continuum damage mechanics (CDM) analysis techniques which have been developed over the last 20 years. The complexity of the CDM methods and their data requirements has been a barrier to their more widespread use. The need for simplified methods has been driven by the need for risk assessment of in-service high temperature welded piping and headers around the world, the need to connect cross-weld data to weld joint design and assessment, and in general, the need to develop suitable guidelines for evaluating the strength of weldments relative to that of base metal.
Proceedings Papers
AM-EPRI2010, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Sixth International Conference, 603-619, August 31–September 3, 2010,
Abstract
View Paper
PDF
Advanced ultra-supercritical fossil plants operated at 700/725 °C and up to 350 bars are currently planned to be realized in the next decade. Due to the increase of the steam parameters and the use of new materials e.g. 9-11%Cr steels and nickel based alloys the design of highly loaded components is approaching more and more the classical design limits with regard to critical wall thickness and the related tolerable thermal gradients. To make full use of the strength potential of new boiler materials but also taking into account their specific stress-strain relaxation behavior, new methods are required for reliable integrity analyses and lifetime assessment procedures. Numerical Finite Element (FE) simulation using inelastic constitutive equations offers the possibility of “design by analysis” based on state of the art FE codes and user-defined advanced inelastic material laws. Furthermore material specific damage mechanisms must be considered in such assessments. With regard to component behavior beside aspects of multiaxial loading conditions must be considered as well as the behavior of materials and welded joints in the as-built state. Finally an outlook on the capabilities of new multi-scale approaches to describe material and component behavior will be given.
Proceedings Papers
AM-EPRI2004, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fourth International Conference, 653-671, October 25–28, 2004,
Abstract
View Paper
PDF
New martensitic steels (9-10 CrMoNi(W)VNbN) are being developed for ultrasupercritical power plants to achieve higher efficiency and reduced environmental impact. Improved life assessment methods are crucial for the safe and economical long-term operation of these high-temperature components. This includes gathering creep, creep-fatigue, and crack data to establish design curves, as well as advanced modeling to predict deformation and lifetime. Complex experiments under various loading conditions and multiaxial behavior are necessary for verification. Furthermore, understanding how creep processes affect pre-existing defects is essential for ensuring long-term component integrity.
Proceedings Papers
AM-EPRI2004, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fourth International Conference, 703-712, October 25–28, 2004,
Abstract
View Paper
PDF
Numerous factors, including actual chemical composition, heat treatment, microstructure, dimensions, and service conditions, determine the lifetime of creep-exposed components. This creates a wide gap between the real condition of a given steel pipe and its project specification. For a 141MW unit main steam line, the remaining life calculated according to the German Boiler Code TRD 508 was found to be almost exhausted. It was recommended to remove a pipe sample with a circumference weld for laboratory examination. Stress rupture tests were performed on three types of specimens: tangential, longitudinal, and longitudinal with a heat-affected zone in the middle of the gauge length using the isostress testing method. Metallographic examination of the broken specimens was conducted. Linear extrapolation of the rupture times to the service temperature yielded a residual service life of more than 100,000 hours.
Proceedings Papers
AM-EPRI2004, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fourth International Conference, 1101-1114, October 25–28, 2004,
Abstract
View Paper
PDF
High precision stress relaxation tests (SRT) at temperatures between 550C and 700C were performed on serviced and reheat treated T91, 9%Cr steel. The service exposure was 116,000 hours at steam temperatures to 550C. Constant displacement rate (CDR) tests were also run at 600C on notched specimens for the two conditions. Specimens, heat treated after service, were stronger at the lower test temperatures in terms of both tensile strength and creep strength. This difference was reflected in the CDR results, which also suggested a lower fracture resistance in the heat treated condition. Thus, service exposure appears to have softened the alloy and enhanced its resistance to fracture, with no evidence of embrittling reactions. Based on the analysis of the SRT tests, projections were made of the times to 1% creep and the times to rupture as well as direct comparisons with minimum creep rate data'. When plotted on the basis of a Larson- Miller parameter (C=30), the calculated values compared well with actual long time rupture testing for exposed and re-heat treated specimens, and generally showed higher precision. The longest test time was about eighteen months for the stress rupture data compared with the use of one machine for a few weeks for the SRT data. The latter actually covered a far greater range of creep rates and projected lives. The SRT test is especially consistent at higher parameter values, i.e., higher temperatures and/or lower stresses. This method of accelerated testing is now being applied to a wide range of alloys for fossil power plants for composition and process optimization, design analysis, and life assessment.