Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-3 of 3
Pipe fittings
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 723-734, October 15–18, 2024,
Abstract
View Paper
PDF
Olefin furnaces contain gravity cast U-bend fittings from Fe-Ni-Cr alloys that can experience premature failures due to a combination of harsh service conditions. The fittings undergo steep temperature variations during startup and shutdown, outer diameter (OD) oxidation from furnace flue gases, and inner diameter (ID) carburization from process fluids. As a result, cracking often occurs along large solidification grain boundaries from interconnected networks of carbides and secondary phases. To address these degradation concerns, Wire Arc Additive Manufacturing (WAAM) is being used to produce a functionally graded fitting that provides increased oxidation, carburization, creep, and thermal fatigue resistance. Three welding wire compositions have been designed based on thermodynamic and kinetic modeling techniques to address the appropriate corrosion resistance and mechanical properties needed in the OD, Core, and ID regions of the U- bend fitting cross-section. A Fe-35Cr-45Ni-0.7Nb solid welding wire is being used for the Core section, and metal-cored welding wires based around this composition with additions of Si or Al are being used for the OD and ID sections, respectively. This study involved weldability evaluation focused on understanding the microstructures and potential additive manufacturing printability challenges associated with graded WAAM structures using these welding wires. To achieve this, Cast Pin Tear Testing (CPTT) was performed to evaluate solidification cracking susceptibility of the welding wires. Additionally, Scheil calculations were performed in Thermo-Calc software to predict solidification microstructures. To validate the results, SEM characterization was conducted on cast buttons of each welding wire to identify phases in the respective microstructures. These unique data will help inform WAAM design parameters needed to produce a Functionally Graded Material (FGM) that improves the lifetime of Fe-Ni-Cr U-bend fittings in olefin furnaces.?
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 1114-1125, October 15–18, 2024,
Abstract
View Paper
PDF
High-pressure valves and fittings used in coal-fired 600/625 °C power plants are hardfaced for protection against wear and corrosion and to provide optimum sealing of the guides and seats. Stellite 6 and Stellite 21 are often used for hardfacing, which is carried out by build-up welding, usually in several layers. The valve materials are generally heat-resistant steels such as 10CrMo9-10 (1.7380), X20CrMoV1 (1.4922), or Grade 91 / Grade 92 (1.4903 / 1.4901). In recent years, cracks or delaminations have frequently occurred within the hardfaced layer. The influence of cycling operation is not well understood. Other essential factors are the chemical composition of the base material and of the filler metal; especially in terms of the resulting iron dilution during the deposition of the welding overlays. The research project was initiated to investigate the crack and delamination behavior and to understand the involved damage mechanisms. Thermostatic and cyclic exposure tests have shown that cracking is favored by the formation of brittle phases due to iron dilution from the substrate material during the manufacturing process. Recommendations for the welding process of hardfaced sealing surfaces of fittings were derived from the investigation results.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 1132-1144, October 21–24, 2019,
Abstract
View Paper
PDF
Advanced power systems that operate at temperatures higher than about 650°C will require nickel-base alloys in critical areas for pressure containment. Age-hardened alloys offer an additional advantage of reduced volume of material compared with lower strength solid solution-strengthened alloys if thinner tube wall can be specified. To date, the only age-hardened alloy that has been approved for service in the time dependent temperature regime in the ASME Boiler and Pressure Vessel Code is INCONEL alloy 740H. Extensive evaluation of seamless tube, pipe, and forged fittings in welded construction, including implant test loops and pilot plants, has shown the alloy to be fit for service in the 650-800°C (1202-1472°F) temperature range. Since, nickel-base alloys are much more expensive than steel, manufacturing methods that reduce the cost of material for advanced power plants are of great interest. One process that has been extensively used for stainless steels and solution-strengthened nickel-base alloys is continuous seam welding. This process has rarely been applied to age-hardened alloys and never for use as tube in the creep-limited temperature regime. This paper presents the initial results of a study to develop alloy 740H welded tube, pipe and fittings and to generate data to support establishment of ASME code maximum stress allowables.