Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-1 of 1
Free energy
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 1363-1371, October 22–25, 2013,
Abstract
View Paper
PDF
Prediction of long-term creep strength is an important issue for industrial plants operated at elevated temperatures, although the creep strength of high Cr ferritic steels depends on their microstructural evolution during creep. The state of microstructure in metallic materials can be expressed as numerical values based on a concept of system free energy. In this study, in order to evaluate long term creep strength of 9Cr ferritic steel containing B, change in the system free energy during creep of the steel is evaluated as the sum of chemical free energy, strain energy and surface energy, which are obtained by a series of experiments, i.e., chemical analysis using extracted residues, X-ray diffraction, and scanning transmission electron microscopy. The system free energy decreases with creep time. Change in the energy is expressed quantitatively as a numerical formula using the rate constants which depend on applied stress. On the basis of these facts, long term creep strength of the steel can be evaluated at both 948K(675°C) and 973K(700 °C).