Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-15 of 15
Tensile strength
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 123-134, February 25–28, 2025,
Abstract
View Papertitled, Evaluation of the Mechanical Properties of Cast and Wrought CF8C-Plus Relevant to ASME Code Case Qualification
View
PDF
for content titled, Evaluation of the Mechanical Properties of Cast and Wrought CF8C-Plus Relevant to ASME Code Case Qualification
The mechanical behavior of a cast form of an advanced austenitic stainless steel, CF8C-Plus, is compared with that of its wrought equivalent in terms of both tensile and creep-rupture properties and estimated allowable stress values for pressurized service at temperatures up to about 850°C. A traditional Larson-Miller parametric model is used to analyze the creep-rupture data and to predict long-term lifetimes for comparison of the two alloy types. The cast CF8C-Plus exhibited lower yield and tensile strengths, but higher creep strength compared to its wrought counterpart. Two welding methods, shielded-metal-arc welding (SMAW) and gas-metal-arc welding, met the weld qualification acceptance criteria in ASME BPVC Section IX for the cast CF8C-Plus. However, for the wrought CF8C-Plus, while SMAW and gas-tungsten-arc welding passed the tensile acceptance criteria, they failed the side bend tests due to lack of fusion or weld metal discontinuities.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 558-569, October 21–24, 2019,
Abstract
View Papertitled, Microstructure and Mechanical Properties of Haynes 282 Fabricated by Electron Beam Melting
View
PDF
for content titled, Microstructure and Mechanical Properties of Haynes 282 Fabricated by Electron Beam Melting
The Haynes 282 Ni-based superalloy (57Ni-20Cr-10Co-8.5Mo-2.1Ti-1.5Al) is a very promising candidate for the fabrication by additive manufacturing of gas turbine components of complex geometries. Alloy 282 was fabricated by electron beam melting (EBM) and exposed to two different heat treatments, (a) solution anneal (SA) at 1135°C followed by the standard 2-step aging treatment (2h at 1010°C plus 8h at 788°C) and (b) SA followed by 4h 800°C. Large elongated grains were observed for the as-fabricated and annealed EBM 282 materials, with a γ′ (Ni 3 (Al,Ti)) average size of ~100 nm and 20 nm, respectively. The as-fabricated EBM 282 alloy exhibited good ductility at 20-900°C and tensile strength slightly lower than the tensile strength of wrought 282. Annealing the alloy resulted in a moderate increase of the alloy strength at 800 and 900°C but a decrease of the alloy ductility. The creep lifetime at 800°C, 200MPa of the as-fabricated and annealed EBM 282 specimens machined along the build direction was 2 times and 1.5 times superior to the expected lifetime for wrought 282, respectively. For creep specimens machined perpendicular to the build direction, the lifetimes were ~25% lower compared to the wrought alloy. These creep results are directly related to the strong grain texture of the EBM 282 alloy and the limited impact of the initial γ′ (Ni 3 (Al,Ti)) size on alloy 282 creep properties.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 673-684, October 21–24, 2019,
Abstract
View Papertitled, Study on the Long-Term Performance of Super 304H Pipe in Superheater of Ultra Supercritical 1000 MW Power Unit
View
PDF
for content titled, Study on the Long-Term Performance of Super 304H Pipe in Superheater of Ultra Supercritical 1000 MW Power Unit
The long-term performance of superheater super 304h tube during the normal service of an ultra-supercritical 1000mw thermal power unit was tracked and analyzed, and the metallographic structure and performance of the original tube sample and tubes after 23,400h, 56,000h, 64,000 h, 70,000 h and 80,000 h service were tested. The results show that the tensile strength, yield strength and post-break elongation meet the requirements of ASME SA213 S30432 after long-term service, but the impact toughness decreases significantly. The metallographic organization is composed of the original complete austenite structure and gradually changes to the austenite + twin + second phase precipitates. With the extension of time, the number of second phases of coarseness in the crystal and the crystal boundary increases, and the degree of chain distribution increases. The precipitation phase on the grain boundary is dominated by M 23 C 6 , and there are several mx phases dominated by NbC and densely distributed copper phases in the crystal. The service environment produces a high magnetic equivalent and magnetic induction of the material, the reason is that there are strips of martensite on both sides of the grain boundary, and the number of martensite increases with the length of service.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 869-879, October 21–24, 2019,
Abstract
View Papertitled, Establishing Induction Bending Technique for Ni-Based Alloy HR6W Large Piping
View
PDF
for content titled, Establishing Induction Bending Technique for Ni-Based Alloy HR6W Large Piping
In order to establish a induction bending technique for Ni-based alloy HR6W large pipe, induction bending test was conducted on HR6W, which is a piping candidate material of 700°C class Advanced Ultra-Super Critical. In this study, a tensile bending test in which tensile strain was applied and a compression bending test in which compression strain was applied to the extrados side of the pipe bending part. As the results of these two types of induction bending tests, it was confirmed that a predetermined design shape could be satisfied in both bending tests. In addition, the wall thickness of the pipe was equal to or greater than that of the straight pipe section in compression bending. Therefore, if compression bending is used, it is considered unnecessary to consider the thinning amount of the bent portion in the design. Next, penetrant test(PT) on the outer surface of the bending pipes were also confirmed to be acceptable. Subsequently, metallographic samples were taken from the outer surface of the extrados side, neutral side and intrados side of the pipe bending portion. Metallographic observation confirmed that the microstructures were normal at all the three selected positions. After induction bending, the pipe was subjected to solution treatment. Thereafter, tensile tests and creep rupture tests were carried out on samples that were cut from the extrados side, neutral side and intrados side of the pipe bending portion. Tensile strength satisfied the minimum tensile strength indicated in the regulatory study for advanced thermal power plants report of Japan. Each creep rupture strength was the almost same regardless of the solution treatment conditions. From the above, it was possible to establish a induction bending technique for HR 6W large piping.
Proceedings Papers
Microstructure Characterization of a 2.25Cr-1Mo Main Steam Pipe Weldment after Long-Term Service
Free
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 1098-1108, October 21–24, 2019,
Abstract
View Papertitled, Microstructure Characterization of a 2.25Cr-1Mo Main Steam Pipe Weldment after Long-Term Service
View
PDF
for content titled, Microstructure Characterization of a 2.25Cr-1Mo Main Steam Pipe Weldment after Long-Term Service
Metallographic tests, micro-hardness tests, mechanics performance tests and Energy Dispersion Spectrum (EDS) were conducted for a 2.25Cr-1Mo main steam pipe weldment served for more than 32 years. Microstructural evolution of the 2.25Cr-1Mo base metal and weld metal was investigated. Degradation in micro-hardness and tensile properties were also studied. In addition, the tensile properties of subzones in the ex-service weldment were characterized by using miniature specimens. The results show that obvious microstructural changes including carbide coarsening, increasing inter lamella spacing and grain boundary precipitates occurred after long-term service. Degradation in micro-hardness is not obvious. However, the effects of long term service on tensile deformation behavior, ultimate tensile strength and yield stress are remarkable. Based on the yield stress of micro-specimens, the order of different subzones is: WM>HAZ>BM, which is consistent with the order of different subzones based on micro-hardness. However, the ultimate tensile strength and fracture strain of HAZ are lower than BM.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 1224-1236, October 21–24, 2019,
Abstract
View Papertitled, Effect of Thermal Aging Treatment on Microstructure Evolution and Mechanical Properties Development in a Ni-Cr-Mo-V Weld Metal
View
PDF
for content titled, Effect of Thermal Aging Treatment on Microstructure Evolution and Mechanical Properties Development in a Ni-Cr-Mo-V Weld Metal
In this study, 25Cr2Ni2Mo1V filler metal was deposited to weld low pressure steam turbine shafts, which are operated in fossil power plants. A comparison experiment was conducted on the weld metals (WMs) before and after varied various aging duration from 200 hours up to 5000 hours at 350 ℃. Microstructure was characterized by means of scanning electron microscopy (SEM) and electron back-scattered diffraction (EBSD) techniques. In addition, mechanical properties of corresponding specimens were evaluated, e.g. Vickers microhardness, Charpy V impact toughness and tensile strength. It is shown that the tensile strength remained stable while impact energy value decreased with increasing aging duration. Based on the experiment above, it was concluded that the variation of mechanical properties can be attributed to the redissolution of carbides and reduction of bainite lath substructure.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 242-253, October 22–25, 2013,
Abstract
View Papertitled, Evaluation of High Temperature Strength of a Ni-Base Alloy 740H for Advanced Ultra-Supercritical Power Plant
View
PDF
for content titled, Evaluation of High Temperature Strength of a Ni-Base Alloy 740H for Advanced Ultra-Supercritical Power Plant
High temperature strength of a nickel-based superalloy, Alloy 740H, was investigated to evaluate its applicability to advanced ultrasupercritical (A-USC) power plants. A series of tensile, creep and fatigue tests were performed at 700°C, and the high temperature mechanical properties of Alloy 740H was compared with those of other candidate materials such as Alloy 617 and Alloy 263. Although the effect of the strain rate on the 0.2% proof stress was negligible, the ultimate tensile strength and the rupture elongation significantly decreased with decreasing strain rate, and the transgranular fracture at higher strain rate changed to intergranular fracture at lower strain rate. The time to creep rupture of Alloy 740H was longer than those of Alloy 617 and Alloy 263. The fatigue limit of Alloy 740H was about half of the ultimate tensile strength. Further, Alloy 740H showed greater fatigue strength than Alloy 617 and Alloy 263, especially at low strain range.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 1329-1340, October 22–25, 2013,
Abstract
View Papertitled, A New Developed 9%Cr Steel with High Boron Content Achieving the Long-Term Microstructural Stability and the Optimized Mechanical Properties for 625°C USC Power Plant Boiler
View
PDF
for content titled, A New Developed 9%Cr Steel with High Boron Content Achieving the Long-Term Microstructural Stability and the Optimized Mechanical Properties for 625°C USC Power Plant Boiler
A new 9%Cr steel with high boron levels (boron steel) has been developed by optimization studies on steels and alloys that are applicable to advanced ultra-super critical power plants operated at steam conditions of 700°C and 30 MPa and above. The composition and heat treatment condition of boron steel was optimized by the initial hardness, tensile strength, yield strength, and Charpy impact values on the basis of the fundamental investigation with the stability of the long-term creep strength. Creep testing of boron steel was conducted at temperatures between 600 and 700°C. The creep rupture strength at 625°C and 105 h is estimated to be 122 MPa for the present 9% Cr steel with high boron by Larson-Miller parameter method. Furthermore, physical properties as a function of temperature, metallurgical properties, tensile properties, and toughness were examined to evaluate the applicability of the steel for a 625°C USC power plant boiler. It was also confirmed that the steel has good workability for such an application by the flaring and flattening tests with tube specimens having an outer diameter of approximately 55 mm.
Proceedings Papers
AM-EPRI2010, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Sixth International Conference, 986-994, August 31–September 3, 2010,
Abstract
View Papertitled, Mechanical Properties and Microstructures of an S304H-Type Steel Subjected to Hot Working
View
PDF
for content titled, Mechanical Properties and Microstructures of an S304H-Type Steel Subjected to Hot Working
The effect of multiple hot rolling in the temperature interval of 700-1000°C (1290-1830°F) on microstructures and tensile behavior of an S304H-type austenitic stainless steel was studied. The structural changes during hot working are characterized by the elongation of original grains towards the rolling axis and the development of new fine grains. The fraction of fine grains and the average grain size increase with increasing the rolling temperature. The multiple hot rolling results in significant strengthening. The offset yield strength approaches 1080 MPa in the sample processed at 700°C (1290°F), while that of 390 MPa is obtained after rolling at 1000°C (1830°F). On the other hand, the tensile strength at elevated temperatures of 600-700°C (1110-1290°F) decreases with a decrease in the rolling temperature. The relationship between the deformation structures and the tensile behavior is considered in some detail.
Proceedings Papers
AM-EPRI2007, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fifth International Conference, 424-433, October 3–5, 2007,
Abstract
View Papertitled, Mechanical Properties and Manufacturability of Ni-Fe Base Superalloy (FENIX-700) for A-USC Steam Turbine Rotor Large Forgings
View
PDF
for content titled, Mechanical Properties and Manufacturability of Ni-Fe Base Superalloy (FENIX-700) for A-USC Steam Turbine Rotor Large Forgings
To develop 10-ton class forgings with adequate long-term strength and without segregation defects for A-USC steam turbine rotors, researchers modified the chemical composition of Alloy 706 to improve its microstructure stability and segregation properties. The modified Alloy, named FENIX-700, is a γ' phase strengthened alloy without a γ" phase, and its microstructure stability is superior to Alloy 706 at 700°C, as demonstrated by short-term aging tests and phase stability calculations using the CALPHAD method. A trial disk 1-ton class forging of FENIX-700 was manufactured from a double-melted ingot, with tensile and creep strength of the forging equivalent to that of 10-kg class forgings, indicating a successful trial. Long-duration creep tests were performed using 10-kg class forgings, revealing an approximate 105-hour creep strength at 700°C higher than 100 MPa. Manufacturability tests showed that FENIX-700 performs better than Alloy 706, as evidenced by segregation tests using a horizontal directional solidification furnace and hot workability tests. Microstructure observation and tensile tests on 10,000-hour aged specimens (at temperatures of 650, 700, and 750°C) revealed degradation of tensile strength and yield stress due to coarsening of the γ' phase, but also showed enhanced ductility through aging. The microstructure stability of FENIX-700 at 700°C was confirmed as excellent through microstructure observation of the 10,000-hour aged sample and supporting thermodynamic considerations.
Proceedings Papers
AM-EPRI2004, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fourth International Conference, 575-586, October 25–28, 2004,
Abstract
View Papertitled, Modification of Ni-Fe Base Superalloy for Steam Turbine Applications
View
PDF
for content titled, Modification of Ni-Fe Base Superalloy for Steam Turbine Applications
To improve microstructure stability at temperature up to 700°C and avoid segregation of Nb during melting processes, we modified the chemical composition of conventional Ni-Fe base super alloy(Ni-36Fe-16Cr-3Nb-1.7Ti-0.3Al:Alloy706). It is known that Alloy706 is strengthened by γ'(Ni 3 Al) phase and γ”(Ni 3 Nb) phase. But these phases are unstable at high temperature and transform into Nb rich δ or η) phase after long-term exposure to elevated temperature. Therefore modified alloy contains lower Nb and higher Al than those of Alloy706, and it is mainly strengthened by γ’(Ni 3 Al) phase. In fact we could not find δ or η phase in the modified alloy after creep and aging at 700 °C. Tensile strengths of the modified alloy at temperature from room temperature to 700 °C were almost same as those of Alloy706. Yield strength of modified alloy at room temperature was slightly lower than that of Alloy706, but equivalent to that of Alloy706 at higher temperatures. Tensile and yield strengths of the modified alloy at temperature from room temperature to 700 °C were higher than those of Alloy706 after aging at 700 °C. In this paper, we discuss effects of Nb and Al on mechanical properties and microstructure at elevated temperature up to 700 °C, using mechanical testing, TEM observations and thermodynamics calculation results. And we show advantages of the microstructure stabilized Ni-Fe base superalloy(FENIX-700), which is a candidate material for 700 °C class USC steam turbine rotor.
Proceedings Papers
AM-EPRI2004, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fourth International Conference, 623-637, October 25–28, 2004,
Abstract
View Papertitled, Development of Wrought Ni-Based Superalloy with Low Thermal Expansion for 700C Steam Turbines
View
PDF
for content titled, Development of Wrought Ni-Based Superalloy with Low Thermal Expansion for 700C Steam Turbines
Advanced 700C class steam turbines require austenitic alloys instead of conventional ferritic heat-resistant steels which have poor creep strength and oxidation resistance above 650C. Austenitic alloys, however, possess a higher thermal expansion coefficient than ferritic 12Cr steels. Therefore, Ni-based superalloys were tailored to reduce their coefficients to the level of 12Cr steels. Regression analysis of commercial superalloys proves that Ti, Mo and Al decrease the coefficient quantitatively in this order, while Cr, used to secure oxidation resistance, increases it so significantly that Cr should be limited to 12wt%. The newly designed Ni-18Mo-12Cr-l.lTi-0.9Al alloy is strengthened by gamma-prime [Ni 3 (Al,Ti)] and also Laves [Ni 2 (Mo,Cr)] phase precipitates. It bears an RT/700C mean thermal expansion coefficient equivalent to that of 12Cr steels and far lower than that of low-alloyed heat resistant steels. Its creep rupture life at 700C and steam oxidation resistance are equivalent to those of a current turbine alloy, Refractaloy 26, and its tensile strength at RT to 700C surpasses that of Refractaloy 26. The new alloy was trial produced using the VIM-ESR melting process and one ton ingots were successfully forged into round bars for bolts without any defects. The bolts were tested in an actual steam turbine for one year. Dye penetrant tests detected no damage. The developed alloy will be suitable for 700C class USC power plants.
Proceedings Papers
AM-EPRI2004, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fourth International Conference, 692-702, October 25–28, 2004,
Abstract
View Papertitled, The Small Punch Test Method: Results from a European Creep Testing Round Robin
View
PDF
for content titled, The Small Punch Test Method: Results from a European Creep Testing Round Robin
The small punch (SP) test technique can generate tensile, toughness, and creep strength data from very small specimens, enabling nondestructive sampling from large components. This has accelerated industry interest in SP, particularly in the energy sector. A round-robin for the SP creep test was organized within the EPERC network on a 1CrMoV rotor steel, primarily to contribute to harmonizing the test procedure for this emerging method. This presentation analyzes the SP creep test results performed at several temperatures and one load level to assess their inter-comparability and interpret the results concerning conventional uniaxial creep tests. The SP loading geometry appeared to be a key parameter in evaluating the SP results, particularly for correlation with uniaxial creep behavior. A standardization initiative for the SP test method, including creep as well as low-temperature testing for determining tensile and toughness properties of metallic materials, has recently started via a CEN Workshop.
Proceedings Papers
AM-EPRI2004, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fourth International Conference, 1101-1114, October 25–28, 2004,
Abstract
View Papertitled, Creep Strength Evaluation of Serviced and Rejuvenated T91 using the Stress Relaxation Method
View
PDF
for content titled, Creep Strength Evaluation of Serviced and Rejuvenated T91 using the Stress Relaxation Method
High precision stress relaxation tests (SRT) at temperatures between 550C and 700C were performed on serviced and reheat treated T91, 9%Cr steel. The service exposure was 116,000 hours at steam temperatures to 550C. Constant displacement rate (CDR) tests were also run at 600C on notched specimens for the two conditions. Specimens, heat treated after service, were stronger at the lower test temperatures in terms of both tensile strength and creep strength. This difference was reflected in the CDR results, which also suggested a lower fracture resistance in the heat treated condition. Thus, service exposure appears to have softened the alloy and enhanced its resistance to fracture, with no evidence of embrittling reactions. Based on the analysis of the SRT tests, projections were made of the times to 1% creep and the times to rupture as well as direct comparisons with minimum creep rate data'. When plotted on the basis of a Larson- Miller parameter (C=30), the calculated values compared well with actual long time rupture testing for exposed and re-heat treated specimens, and generally showed higher precision. The longest test time was about eighteen months for the stress rupture data compared with the use of one machine for a few weeks for the SRT data. The latter actually covered a far greater range of creep rates and projected lives. The SRT test is especially consistent at higher parameter values, i.e., higher temperatures and/or lower stresses. This method of accelerated testing is now being applied to a wide range of alloys for fossil power plants for composition and process optimization, design analysis, and life assessment.
Proceedings Papers
AM-EPRI2004, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fourth International Conference, 1242-1255, October 25–28, 2004,
Abstract
View Papertitled, Effect of Off-Normal Austenization on Creep Strength of Ferritic-Martensitic Steels
View
PDF
for content titled, Effect of Off-Normal Austenization on Creep Strength of Ferritic-Martensitic Steels
The effect of a reduced-temperature austenization treatment on the microstructure and strength of two ferritic-martensitic steels was studied. Prototypic 9% and 12% Cr steels, modified 9Cr-1Mo (ASME T/P91) and Type 422 stainless (12Cr-1Mo-W-V), respectively, were austenized at the standard 1050°C and an off-normal 925°C, both followed by tempering at 760°C. The reduced austenization temperature was intended to simulate potential inadequate austenization during field construction of large structures. The microstructure, tensile behavior, and creep strength were characterized for both steels treated at each condition. While little change in microstructure was observed for the modified 9Cr-1Mo steel, the creep strength was reduced at higher temperatures and in long duration tests. The microstructure of the Type 422 stainless in the off-normal condition consisted of polygonized ferrite instead of tempered martensite. In this case the creep strength was reduced for short duration tests (less than ~1000 hr), but not for long duration tests. Slight reductions in tensile strength were observed at room temperature and elevated temperatures of 450,550, and 650°C.