Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-20 of 22
Fatigue properties
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 88-98, October 15–18, 2024,
Abstract
View Paper
PDF
Thick-walled valves, steam chests, and casings suffer service damage from thermal stresses due to the significant through-thickness temperature gradients that occur during operating transients. Fatigue is the primary damage mechanism, but recent examination of turbine casings has revealed extensive sub-surface creep cavitation. The low primary stress levels for these components are unlikely to cause creep damage, so detailed inelastic analysis was performed to understand the complex stress state that evolves in these components. This illustrates that fatigue cycles can cause elevated stresses during steady operation that cause creep damage. This paper will explore a case study for a 1CrMoV turbine casing where the stress-strain history during operating transients will be related to damage in samples from the turbine casing. This will also highlight how service affects the mechanical properties of 1CrMoV, highlighting the need for service- exposed property data to perform mechanical integrity assessments. Finally, the consequences for repair of damage will be discussed, illustrating how analysis can guide volume of material for excavation and selection of weld filler metal to maximize the life of the repair. This, in turn, will identify opportunities for future weld repair research and material property data development.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 270-283, October 15–18, 2024,
Abstract
View Paper
PDF
To improve the economics of critical components, such as receivers and heat exchangers, for Generation 3 (Gen 3) concentrating solar power (CSP) plants, research was conducted to understand how manufacturing impacts the high-temperature performance of various tube production routes. Gen 3 CSP components are expected to require the use of heat-resistant nickel- based alloys due to the elevated operating temperatures in designs carrying molten salt or supercritical CO 2 . INCONEL alloy 740H (alloy 740H) was investigated as an alternative to UNS N06230 (alloy 230) as it possesses superior high-temperature creep strength which can lead to overall reductions in material cost. A key challenge is understanding how autogenous seam welding with and without re-drawing can be used to manufacture thin-wall tubing for CSP receivers and heat-exchangers to further reduce costs over traditional seamless production routes. Alloy 740H welded tube was successfully fabricated and re-drawn to several relevant tube sizes. Since traditional mechanical testing samples could not be removed from the thin-wall tubing, full-sized tubes were used for tensile, fatigue, and vessel testing (internally pressurized creep- rupture) which was critical to understanding the weld performance of the manufactured product forms. The generated vessel test data exhibited a creep strength reduction when compared to wrought product with no clear trend with temperature or test duration. It was found that redrawing the welded tubes improved the creep strength to approximately 82% of the wrought material performance and elevated temperature tensile and fatigue behavior exceeded 85% of the design minimums. Detailed, post-test characterization found that nano-sized carbides formed during the laser seam-welding process remained stable after multiple solution-annealing steps, which restricted grain growth, and impacted the time-dependent performance. This paper will focus on the time-dependent behavior of the examined welded and redrawn tubes, supporting metallographic evidence, and give perspective on future considerations for using alloy 740H in CSP components.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 483-494, October 15–18, 2024,
Abstract
View Paper
PDF
For the safe life prediction of components under high cycle fatigue loading at high temperature, such as gas turbine blades and turbocharger components, the behavior of initial defects, which are physically short cracks below the long crack threshold ΔK is of crucial importance. The evolution of different crack closure mechanisms (such as plasticity, roughness and oxide induced crack closure) can lead to crack arrest by a reduction of the effective crack tip loading. To visualize the crack growth behavior of such cracks, cyclic crack resistance curves (cyclic R-curves) are used. The experimental determination of cyclic R-curves is challenging, especially under high temperature conditions due to a lack of optical accessibility. The formation of very short cracks in high strength materials makes it even more complicated to reliably determine these data. Within this study the crack growth behavior of physically short fatigue cracks in three different material states of the nickel alloy IN718 (wrought, cast and PBF-LB/M - processed) is experimentally determined at 650 °C. Based on a load increase procedure applied on Single Edge Notched (SEN) specimens with a compression pre-cracking procedure in advance, crack propagation of physically short cracks is measured with alternating current potential drop systems in air and under vacuum conditions. These examinations are carried out for three different load ratios (R = -1, 0 and 0.5) to investigate the amount of certain crack closure mechanisms active under different loading conditions. Moreover, the formation of a plastic wake along the crack flanks is determined by a finite element simulation. The results determined in air and under vacuum conditions are used to describe the impact of oxide induced crack closure on the behavior of physically short cracks. This allows the evaluation of the behavior of both near-surface and internal defects that are not accessible to the atmosphere.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 517-527, October 15–18, 2024,
Abstract
View Paper
PDF
High-performance Ferritic (HiperFer) steels represent a promising materials innovation for next-generation thermal energy conversion systems, particularly in cyclically operating applications like concentrating solar thermal plants and heat storage power plants (Carnot batteries), where current market adoption is hindered by the lack of cost-effective, high-performance materials. HiperFer steels demonstrate superior fatigue resistance, creep strength, and corrosion resistance compared to conventional ferritic-martensitic 9-12 Cr steels and some austenitic stainless steels, making them potentially transformative for future energy technologies. This paper examines the microstructural mechanisms underlying HiperFer’s enhanced fatigue resistance in both short and long crack propagation, while also presenting current findings on salt corrosion properties and exploring potential alloying improvements for fusion reactor applications, highlighting the broad technical relevance of these innovative materials.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 855-860, October 15–18, 2024,
Abstract
View Paper
PDF
Coke drums experience failures in through-wall cracking throughout their operating life, resulting from low cycle fatigue. Coke drums are typically fabricated from Chrome Moly (CrMo) steels. This study was performed on P4 (1.25Cr-0.5Mo) base material using ER70S-B2L and Alloy 625 (ERNiCrMo-3) filler materials. Specimens were welded with the temper-bead/controlled deposition welding technique. The weld processes used were HP-GTAW, GMAW and SMAW. The fatigue performance, HAZ hardness and toughness of the weld samples was evaluated. The HP-GTAW welds exhibited an order of magnitude improvement in fatigue performance when compared to the other weld processes using ER70S-B2L filler material. The HP-GTAW welds also exhibited improved HAZ hardness and toughness when compared to the other weld processes. This presentation will introduce the HP-GTAW process, its features, and benefits and where it is applied in Coke drum repair welding. Comparative test results of the different weld processes for fatigue performance, HAZ tempering, and toughness will also be presented.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 1-10, October 21–24, 2019,
Abstract
View Paper
PDF
Future, flexible thermal energy conversion systems require new, demand-optimized high-performance materials. In order to provide a basis for the targeted development of fatigue-resistant, cost-effective steel grades, the microstructural damage to materials and the failure of conventional and novel steels were investigated in thermo-mechanical fatigue and fatigue crack propagation experiments. Based on the results, improved, ferritic “HiperFer” (High performance Ferrite) steels were designed, produced and characterized. A brief description of the current state of development is given.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 35-46, October 21–24, 2019,
Abstract
View Paper
PDF
The measurement of damage from high temperature solid particle erosion (HTSPE) can be a lengthy process within the laboratory with many lab-based systems requiring sequential heat and cooling of the test piece to enable mass and/or scar volume measurements to be made ex situ. Over the last few years a new lab-based system has been in development at the National Physical Laboratory which has the ability to measure the mass and volume change of eroded samples in situ without the need to cool the sample. Results have previously been shown demonstrating the in situ mass measurement, more recently the in situ volume measurement capability has been added and used to evaluate the erosion performance of additively manufactured materials. Selective laser melting (SLM) is an advanced manufacturing method which is growing in popularity and application. It offers the ability to manufacture low volume complex parts and has been used in rapid prototyping. As the technique has developed there is increasing interest to take advantage of the ability to manufacture complex parts in one piece, which in some case can be more cost and time effective than traditional manufacturing routes. For all the benefits of SLM there are some constraints on the process, these include porosity and defects in the materials such as ‘kissing bonds’, surface roughness, trapped powder and microstructural variation. These features of the processing route may have implications for component performance such as strength, fatigue resistance wear and erosion. To investigate this further SLM IN718 has been used to evaluate factors such as surface roughness, microstructure and morphology on the erosion performance as measured in situ and compared with conventional produced wrought IN718 material.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 580-591, October 21–24, 2019,
Abstract
View Paper
PDF
The harsh operating conditions of Advanced Ultra-Supercritical (A-USC) power plants, i.e., steam operation conditions up to 760°C (1400°F)/35 MPa (5000 psi), require the use of Ni-based alloys with high temperature performance. Currently, the U.S. Department of Energy Fossil Energy program together with Electric Power Research Institute (EPRI) and Energy Industries of Ohio (EIO) is pursuing a Component Test (Comets) project to address material- and manufacturing-related issues for A-USC applications. Oak Ridge National Laboratory (ORNL) is supporting this project in the areas of mechanical and microstructure characterization, weld evaluation, environmental effect studies, etc. In this work, we present results from these activities on two promising Ni-based alloys and their weldments for A-USC applications, i.e., Haynes 282 and Inconel 740H. Detailed results include microhardness, tensile, air and environmental creep, low cycle fatigue, creep-fatigue, environmental high cycle fatigue, and supporting microstructural characterization.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 1215-1223, October 21–24, 2019,
Abstract
View Paper
PDF
Both of high pressure main throttle valves and one governing valves were jammed during the cold start of steam turbine served for 8541 hours at 600 °C in an ultra supercritical power plant. Other potential failure mechanisms were ruled out through a process of elimination, such as low oil pressure of digital electro-hydraulic control system, jam of orifice in the hydraulic servo-motor, and the severe bending of valve stem. The root cause was found to be oxide scales plugged in clearances between the valve disc and its bushing. These oxide scales are about 100~200 μm in thickness while the valve clearances are about 210~460 μm at room temperature. These oxide scales are mainly composed of Fe 3 O 4 and Fe 2 O 3 with other tiny phases. Both of valve disc and its bushing were treated with surface nitriding in order to improve its fatigue resistance, which unexpectedly reduces the steam oxidation resistance. On the other hand, significant fluctuation of valve inner wall temperature during operation accelerated the exfoliation of oxide scales, and the absence of full stroke test induced the gradual accumulation of scales in valve clearances. In light of the steam valve jam mechanism in the present case, treatments in aspects of operation and resistance to steam oxidation are recommended.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 1351-1360, October 21–24, 2019,
Abstract
View Paper
PDF
9-12%Cr martensitic steels can be applied to the next highest temperature components such as boiler tracts, steam pipelines and turbines of advanced ultra-supercritical power plants with steam temperatures of 650°C. New 10%Cr martensitic steels with high B and low N contents can be a worthy candidate for use in production because it has superior creep resistance. At the same time, resistance to cyclic and dynamic loads is very important. In this work, we studied the low cycle fatigue (LCF) properties at room and elevated (500-650°C) temperatures and Charpy impact toughness at temperatures ranging from -196…100°C of advanced 10% Cr martensitic steel with high B and low N contents. The effect of new alloying scheme and corresponding peculiarities of M 23 C 6 carbides on the low cycle fatigue resistance and impact toughness of the 10%Cr martensitic steel is analyzed. It is revealed that fine and densely distributed carbides has no effect on the fatigue resistance except for the slight improvement of fatigue life at small strain amplitudes and shift the ductile-brittle transition temperature (DBTT) to higher but satisfactory value of +10°C as compared to other high-chromium martensitic steels.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 90-100, October 11–14, 2016,
Abstract
View Paper
PDF
There are main drivers for the design and assessment of steam turbine components of today such as demands for improved materials, higher plant cycling operation, and reduced life-cycle costs. New materials have been developed over the last decades resulting in advanced martensitic 9-10CrMoV steels already applied in different types of turbines successfully. Heavy cyclic loading getting more importance than in the past results in utilization of the fatigue capabilities at high and low temperatures which might lead to crack initiation and subsequent crack propagation. Fracture mechanics methods and evaluation concepts have demonstrated their applicability to assess the integrity of components with defects or crack-like outage findings. Based on realistic modelling of the failure mechanism, accurate prediction of crack sizes at failure state can be improved defining the appropriate damage criteria. Ductility is a main aspect for robust design but its value definition can depend on component type, design rules, real loading conditions, service experience, and material characteristics. The question which direct material parameter is able to serve as limit value in design and how it can be determined has to be solved. Examples of advanced analysis methods for creep crack growth and fatigue interaction involving the crack initiation time show that the reserves of new martensitic 9-10Cr steels in high temperature application can be well quantified. The creep rupture elongation A u and the loading conditions in the crack far field are main factors. If the A u value is sufficient high also after long-time service, the material remains robust against cracks. Investigations into the influence of stress gradients on life time under fatigue and creep fatigue conditions show that e.g. for 10CrMoWV rotor steel crack growth involvement offers further reserves. The consideration of constraint effect in fracture mechanics applied to suitable materials allows for further potentials to utilize margin resulting from classical design. The new gained knowledge enables a more precise determination of component life time via an adapted material exploitation and close interaction with advanced design rules.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 400-406, October 11–14, 2016,
Abstract
View Paper
PDF
Austenitic stainless steels have been used for boiler tubes in power plants. Since austenitic stainless steels are superior to ferritic steels in high temperature strength and steam oxidation resistance, austenitic stainless steel tubes are used in high temperature parts in boilers. Dissimilar welded joints of austenitic steel and ferritic steel are found in the transition regions between high and low temperature parts. In dissimilar welded parts, there is a large difference in the coefficient of thermal expansion between austenitic and ferritic steel, and thus, thermal stress and strain will occur when the temperature changes. Therefore, the dissimilar welded parts require high durability against the repetition of the thermal stresses. SUPER304H (18Cr-9Ni-3Cu-Nb-N) is an austenitic stainless steel that recently has been used for boiler tubes in power plants. In this study, thermal fatigue properties of a dissimilar welded part of SUPER304H were investigated by conducting thermal fatigue tests and finite element analyses. The test sample was a dissimilar welded tube of SUPER304H and T91 (9Cr-1Mo-V-Nb), which is a typical ferritic heat resistant boiler steel.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 610-621, October 11–14, 2016,
Abstract
View Paper
PDF
The fatigue crack propagation thresholds of SAW weld metal of 25Cr2Ni2MoV simulating product of fossil and nuclear power low pressure turbine rotor at different stress ratios are tested. There is a big dispersity of the test results, even at the same stress ratio. The double logarithm curves of the fatigue crack growth rate and stress intensity factor range are researched. The difference of critical points between stable propagation region and near-threshold region in different specimens is found to be an important cause to the dispersity. Their locations in the specimens can be determined by the method of backward inference. After the observation of the microstructures around the critical points, a good correspondence between the size of prior austenite grain and the maximum size of monotonic plastic zone on the crack tip is confirmed. The difference of the critical points at the same stress ratio is caused by the inhomogeneous microstructures. So the inhomogeneous microstructures in the multi-pass and multi-layer weld metal contribute to the dispersity of the experimental threshold values.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 120-130, October 22–25, 2013,
Abstract
View Paper
PDF
In an earlier paper, preliminary data for HAYNES 282 alloy was presented for potential advanced steam power plant applications. Since then, 282 alloy has continued to be evaluated for a variety of A-USC applications: superheater boiler tubing, large header piping, rotors, casings, etc. Per current practice the alloy achieves its strengthening by a two-step age hardening heat treatment. Given the difficulty of such a procedure, particularly for larger components in the power plant, interest has focused on the development of a single step age hardening treatment. While considerable work on 282 alloy is still going on by a number of investigators, during the preceding years a large amount of data was generated in characterizing the alloy at Haynes International. This paper will briefly review the behavior of 282 alloy in air and water vapor oxidation (10% H 2 O) at 760°C (1400°F), low cycle fatigue properties at 649°C to 871°C (1200°F to 1600°F) and long-term thermal stability at 649°C to 871°C (1200°F to 1600°F). Special focus of the paper will be mechanical behavior: tensile and creep; microstructural analysis, and weldability of 282 alloy as a result of single step age hardening heat treatment: 800°C (1475°F)/8hr/AC.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 155-166, October 22–25, 2013,
Abstract
View Paper
PDF
In several material qualification programs tubes and thick-walled components mainly from Alloy 617 and Alloy 263 were investigated. Results as low cycle fatigue and long term creep behavior of base materials and welds are presented. Numerical models to describe the material behavior have been developed and verified by multiaxial tests. In order to ensure the feasibility of A-USC plants two test loops have been installed in GKM Mannheim – one for tube materials and a new one for thick-walled piping and components. The latter consists of a part with static loading and a part subjected to thermal cycles and is in operation since November 2012. First results of measurements and numerical calculations for a pipe bend (static loading) as well as pipes and a header (thermal cycles) are presented.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 242-253, October 22–25, 2013,
Abstract
View Paper
PDF
High temperature strength of a nickel-based superalloy, Alloy 740H, was investigated to evaluate its applicability to advanced ultrasupercritical (A-USC) power plants. A series of tensile, creep and fatigue tests were performed at 700°C, and the high temperature mechanical properties of Alloy 740H was compared with those of other candidate materials such as Alloy 617 and Alloy 263. Although the effect of the strain rate on the 0.2% proof stress was negligible, the ultimate tensile strength and the rupture elongation significantly decreased with decreasing strain rate, and the transgranular fracture at higher strain rate changed to intergranular fracture at lower strain rate. The time to creep rupture of Alloy 740H was longer than those of Alloy 617 and Alloy 263. The fatigue limit of Alloy 740H was about half of the ultimate tensile strength. Further, Alloy 740H showed greater fatigue strength than Alloy 617 and Alloy 263, especially at low strain range.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 254-264, October 22–25, 2013,
Abstract
View Paper
PDF
Significant development is being carried out worldwide for establishing advanced ultra supercritical power plant technology which aims enhancement of plant efficiency and reduction of emissions, through increased inlet steam temperature of 750°C and pressure of 350 bar. Nickel base superalloy, 50Ni-24Cr-20Co-0.6Mo-1Al-1.6Ti-2Nb alloy, is being considered as a promising material for superheater tubes and turbine rotors operating at ultra supercritical steam conditions. Thermal fluctuations impose low cycle fatigue loading in creep regime of this material and there is limited published fatigue and creep-fatigue characteristics data available. The scope of the present study includes behavior of the alloy under cyclic loading at operating temperature. Strain controlled low cycle fatigue tests, carried out within the strain range of 0.2%-1%, indicate substantial hardening at all temperatures. It becomes more evident with increasing strain amplitude which is attributed to the cumulative effects of increased dislocation density and immobilization of dislocation by γ′ precipitates. Deformation mechanism which influences fatigue life at 750°C as a function of strain rate is identified. Hold times up to 500 seconds are introduced at 750°C to evaluate the effect of creep fatigue interaction on fatigue crack growth, considered as one of the primary damage mode. The macroscopic performance is correlated with microscopic deformation characteristics.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 344-350, October 22–25, 2013,
Abstract
View Paper
PDF
Increasing demand for reliable design of all kinds of structures requires materials properties evaluated under the conditions as close to real service conditions as possible. Presently resolved project dealing with development of new turbine blades geometry requires better understanding of the material behavior under service conditions. Service conditions of turbine blades are cyclic loading at high temperatures under superheated steam conditions and complex mechanical loading. There are not commercially available testing systems providing such functionality and thus the system allowing samples testing under considered conditions was developed. The system allows cyclic loading at temperatures up to 650°C under superheated steam conditions. Typical blade steel is investigated here and experimental approach considering complex mechanical loading as well as thermal and corrosion is shown here. The results of high cycle fatigue tests in superheated steam corrosive environment are shown here.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 679-689, October 22–25, 2013,
Abstract
View Paper
PDF
The creep-fatigue properties of modified 9Cr-1Mo (grade 91) steel have been investigated for the purpose of design in cyclic service. In this paper test results from creep-fatigue (CF) and low cycle fatigue (LCF) on grade 91 steel are reported. The tests performed on the high precision pneumatic loading system (HIPS) are in the temperature range of 550-600ºC, total strain range of 0.7-0.9% and with hold periods in both tension and compression. Curves of cyclic softening and stress relaxation are presented. The CF test results and results obtained from literature are also analysed using methods described in the assessment and design codes of RCC-MRx, R5 and ASME NH as well as by the recently developed Φ-model. It is shown that the number of cycles to failure for CF data can be accurately predicted by the simple Φ-model. The practicality in using the life fraction rule for presenting the combined damage is discussed and recommendations for alternative approaches are made.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 1081-1092, October 22–25, 2013,
Abstract
View Paper
PDF
Constricted steam oxidation resistance and finite microstructural stability limits the use of 9 - 12 wt.-% chromium ferritic-martensitic steels to steam temperatures of about 620 °C. Newly developed 12 wt.-% Cr steels are prone to Z-phase precipitation, which occurs at the expense of the strengthening precipitates, and therefore suffer an accelerated decline in strength during longterm operation. While the concept of ferritic-martensitic chromium steels thus seems to hit technological limitations, further improvement in steam power plant efficiency necessitates a further increase of steam pressure and temperature. Furthermore increasing integration of intermitting renewable energy technologies in electrical power generation poses a great challenge for supply security, which has to be ensured on the basis of conventional power plant processes. Besides improved efficiency for resource preservation, load flexibility, thermal cycling capability and downtime corrosion resistance will play key roles in the design of tailored materials for future energy technology. Under these preconditions a paradigm shift in alloy development towards improvement of cyclic steam oxidation and downtime corrosion resistance in combination with adequate creep and thermomechanical fatigue strength seems to be mandatory. The steam oxidation, mechanical and thermomechanical properties of fully ferritic 18 - 24 wt.-% chromium model alloys, strengthened by the precipitation of intermetallic (Fe,Cr,Si)2(Nb,W) Laves phase particles, indicate the potential of this type of alloys as candidate materials for application in highly efficient and highly flexible future supercritical steam power plants.
1