Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-20 of 400
Mechanical properties
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 13-22, February 25–28, 2025,
Abstract
View Papertitled, The Role of Heat Treatment on Creep Rupture Ductility and its Underlying Metallurgical Mechanism of Forged Ni-based Superalloy
View
PDF
for content titled, The Role of Heat Treatment on Creep Rupture Ductility and its Underlying Metallurgical Mechanism of Forged Ni-based Superalloy
For the safe operation of high temperature equipment, it is necessary to ensure creep rupture ductility of the components from the viewpoint of notch weakening. In this study, the effect of heat treatment conditions on creep rupture ductility was evaluated and its underlying metallurgical mechanism was investigated with using a forged Ni-based superalloy Udimet520. In order to improve the creep rupture ductility without lowering the creep rupture strength, it is important to increase both intragranular strength and intergranular strength in a balanced manner. For this purpose, it was clarified that 1) secondary γ' phase within grains should be kept fine and dense, 2) grain boundaries should be sufficiently covered by M 23 C 6 carbide by increasing its phase fraction, and 3) tertiary γ' phase within grains should be redissolved before the start of creep. To obtain such a precipitate state, it is essential to appropriately select the cooling rate after solution treatment, stabilizing treatment and aging treatment conditions.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 88-98, February 25–28, 2025,
Abstract
View Papertitled, Damage and Cracking in 1CrMoV Casings: Why and How to Repair?
View
PDF
for content titled, Damage and Cracking in 1CrMoV Casings: Why and How to Repair?
Thick-walled valves, steam chests, and casings suffer service damage from thermal stresses due to the significant through-thickness temperature gradients that occur during operating transients. Fatigue is the primary damage mechanism, but recent examination of turbine casings has revealed extensive sub-surface creep cavitation. The low primary stress levels for these components are unlikely to cause creep damage, so detailed inelastic analysis was performed to understand the complex stress state that evolves in these components. This illustrates that fatigue cycles can cause elevated stresses during steady operation that cause creep damage. This paper will explore a case study for a 1CrMoV turbine casing where the stress-strain history during operating transients will be related to damage in samples from the turbine casing. This will also highlight how service affects the mechanical properties of 1CrMoV, highlighting the need for service- exposed property data to perform mechanical integrity assessments. Finally, the consequences for repair of damage will be discussed, illustrating how analysis can guide volume of material for excavation and selection of weld filler metal to maximize the life of the repair. This, in turn, will identify opportunities for future weld repair research and material property data development.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 99-110, February 25–28, 2025,
Abstract
View Papertitled, Experimental and Numerical Characterization of High Temperature Deformation Behavior of 347H Stainless Steel
View
PDF
for content titled, Experimental and Numerical Characterization of High Temperature Deformation Behavior of 347H Stainless Steel
This study investigates how temperature affects the plasticity and thermal creep behavior of 347H stainless steel under uniaxial tension. The research combined experimental testing with advanced computational modeling. Two types of experiments were conducted: uniaxial tensile tests at temperatures from 100°C to 750°C using strain rates of ~10⁻⁴ s⁻¹, and creep tests at temperatures between 600°C and 750°C under various stress levels. These experimental results were used to develop and validate a new integrated mechanistic model that can predict material behavior under any loading condition while accounting for both stress and temperature effects. The model was implemented using a polycrystalline microstructure simulation framework based on elasto-viscoplastic Fast Fourier Transform (EVPFFT). It incorporates three key deformation mechanisms: thermally activated dislocation glide, dislocation climb, and vacancy diffusional creep. The model accounts for internal stress distribution within single crystals and considers how precipitates and solute atoms (both interstitial and substitutional) affect dislocation movement. After validation against experimental data, the model was used to generate Ashby-Weertman deformation mechanism maps for 347H steel, providing new insights into how microstructure influences the activation of different creep mechanisms.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 123-134, February 25–28, 2025,
Abstract
View Papertitled, Evaluation of the Mechanical Properties of Cast and Wrought CF8C-Plus Relevant to ASME Code Case Qualification
View
PDF
for content titled, Evaluation of the Mechanical Properties of Cast and Wrought CF8C-Plus Relevant to ASME Code Case Qualification
The mechanical behavior of a cast form of an advanced austenitic stainless steel, CF8C-Plus, is compared with that of its wrought equivalent in terms of both tensile and creep-rupture properties and estimated allowable stress values for pressurized service at temperatures up to about 850°C. A traditional Larson-Miller parametric model is used to analyze the creep-rupture data and to predict long-term lifetimes for comparison of the two alloy types. The cast CF8C-Plus exhibited lower yield and tensile strengths, but higher creep strength compared to its wrought counterpart. Two welding methods, shielded-metal-arc welding (SMAW) and gas-metal-arc welding, met the weld qualification acceptance criteria in ASME BPVC Section IX for the cast CF8C-Plus. However, for the wrought CF8C-Plus, while SMAW and gas-tungsten-arc welding passed the tensile acceptance criteria, they failed the side bend tests due to lack of fusion or weld metal discontinuities.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 147-158, February 25–28, 2025,
Abstract
View Papertitled, Creep Resistant Martensitic Steels for Operation at High-Temperatures in Power Generation Applications
View
PDF
for content titled, Creep Resistant Martensitic Steels for Operation at High-Temperatures in Power Generation Applications
Increasing the temperature capabilities of ferritic/martensitic 9-12% Cr steels can help in increasing the operating temperature of land-based turbines and minimize the use of expensive high-temperature alloys in the hot section. A creep resistant martensitic steel, JMP, was developed with the potential to operate at or above 650°C. The design of the alloys originated from computational modeling for phase stability and precipitate strengthening using fifteen constituent elements. Cobalt was used for increased solid solution strengthening, Si for oxidation resistance and different W and Mo concentrations for matrix strength and stability. The JMP steels showed increases in creep life compared to MARBN/SAVE12AD at 650°C for testing at various stresses between 138 MPa and 207 MPa. On a Larson-Miller plot, the performance of the JMP steels surpasses that of state-of-the-art MARBN steel. Approximately 21 years of cumulative creep data are reported for the JMP steels which encompasses various compositions. The relationships between composition-microstructure-creep properties are discussed including characterization of microstructures after >20,000 hours in creep.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 159-170, February 25–28, 2025,
Abstract
View Papertitled, Microstructure and Mechanical Properties of Ni-based Alloys Fabricated by Laser Powder Bed Fusion
View
PDF
for content titled, Microstructure and Mechanical Properties of Ni-based Alloys Fabricated by Laser Powder Bed Fusion
The Advanced Materials and Manufacturing Technologies (AMMT) program is aiming at the accelerated incorporation of new materials and manufacturing technologies into nuclear-related systems. Complex Ni-based components fabricated by laser powder bed fusion (LPBF) could enable operating temperatures at T > 700°C in aggressive environments such as molten salts or liquid metals. However, available mechanical properties data relevant to material qualification remains limited, in particular for Ni-based alloys routinely fabricated by LPBF such as IN718 (Ni- 19Cr-18Fe-5Nb-3Mo) and Haynes 282 (Ni-20Cr-10Co-8.5Mo-2.1Ti-1.5Al). Creep testing was conducted on LPBF 718 at 600°C and 650°C and on LPBF 282 at 750°C. finding that the creep strength of the two alloys was close to that of wrought counterparts. with lower ductility at rupture. Heat treatments were tailored to the LPBF-specific microstructure to achieve grain recrystallization and form strengthening γ' precipitates for LPBF 282 and γ' and γ" precipitates for LPBF 718. In-situ data generated during printing and ex-situ X-ray computed tomography (XCT) scans were used to correlate the creep properties of LPBF 282 to the material flaw distribution. In- situ data revealed that spatter particles are the potential causes for flaws formation in LPBF 282. with significant variation between rods based on their location on the build plate. XCT scans revealed the formation of a larger number of creep flaws after testing in the specimens with a higher initial flaw density. which led to a lower ductility for the specimen.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 195-206, February 25–28, 2025,
Abstract
View Papertitled, Fiber-jacketed Creep Resistant Pipes for High-Temperature Applications
View
PDF
for content titled, Fiber-jacketed Creep Resistant Pipes for High-Temperature Applications
In order to enable safe long-term operation, metallic pipes operated in the creep range at high temperatures require considerable wall thicknesses at significant operating pressures, such as those required in thermal power plants of all kinds or in the chemical industry. This paper presents a concept that makes it possible to design such pipes with thinner wall thicknesses. This is achieved by adding a jacket made of a ceramic matrix composite material to the pipe. The high creep resistance of the jacket makes it possible to considerably extend the service life of thin- walled pipes in the creep range. This is demonstrated in the present paper using hollow cylinder specimens. These specimens are not only investigated experimentally but also numerically and are further analyzed after failure. The investigations of the specimen show that the modeling approaches taken are feasible to describe the long-term behavior of the specimen sufficiently. Furthermore, the paper also demonstrates the possibility of applying the concept to pipeline components of real size in a power plant and shows that the used modeling approaches are also feasible to describe their long-term behavior.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 207-218, February 25–28, 2025,
Abstract
View Papertitled, Tensile Property Measurement of AlSi10Mg Lattice Structures - From Single Strut to Lattice Networks
View
PDF
for content titled, Tensile Property Measurement of AlSi10Mg Lattice Structures - From Single Strut to Lattice Networks
At present there is no recognized standard test method that can be used for the measurement of the tensile properties of additively manufactured lattice structures. The aim of this work was to develop and validate a methodology that would enable this material property to be measured for these geometrically and microstructurally complex material structures. A novel test piece has been designed and trialed to enable lattice struts and substructures to be manufactured and tested in standard bench top universal testing machines and in small scale in-situ SEM loading jigs (not reported in this paper). In conjunction with the mechanical tests, a finite element (FEA) modelling approach has been used to help cross validate the methodology and results, and to enable larger lattice structures to be modelled with confidence. The specimen design and testing approach developed, is described and the results reviewed for AlSi10Mg.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 235-246, February 25–28, 2025,
Abstract
View Papertitled, Use of Modeling and Experiments to Assess the Effect of Minor Alloying Additions on Alumina Scale Formation during High-Temperature Oxidation
View
PDF
for content titled, Use of Modeling and Experiments to Assess the Effect of Minor Alloying Additions on Alumina Scale Formation during High-Temperature Oxidation
During the last decades, new generations of Ni-based superalloys have emerged with judiciously controlled chemistries. These alloys heavily rely on the addition of refractory elements to enhance their mechanical properties at elevated temperatures; however, a clear interpretation of the influence of these minor-element additions on the alloy's high-temperature oxidation behavior is still not well understood, particularly from the standpoint of predicting the transition from internal to external alumina formation. In this context, the present investigation describes a systematic study that addresses the intrinsic effects that minor element additions of Nb, Ta, and Re have on the oxidation behavior of alumina-scale forming γ-Ni alloys. By combining a novel simulation approach with high-temperature oxidation experiments, the present study evidences the generally positive effect associated with 2 at. % addition of Ta and Re as well as the detrimental consequences of Nb additions on the 1100 °C oxidation of (in at. %) Ni-6Al-(0,4,6,8)Cr alloys.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 259-269, February 25–28, 2025,
Abstract
View Papertitled, Life Extension of Gas Turbine Blades Made from Nickel-Based Superalloys
View
PDF
for content titled, Life Extension of Gas Turbine Blades Made from Nickel-Based Superalloys
Gas turbine blades made from nickel-based superalloys, valued for their high temperature stability and creep resistance, undergo various forms of microstructural degradation during extended service at elevated temperatures that can ultimately lead to blade failure. To extend blade and turbine rotor life, Sulzer has developed evaluation and rejuvenation processes that include microstructural assessment and stress rupture testing of specimens from service-exposed blades. While stress rupture testing presents certain limitations and challenges in evaluating material condition, Sulzer has successfully rejuvenated hundreds of gas turbine blade sets across multiple superalloy types, including GTD 111, IN 738 LC, and U 500, demonstrating the effectiveness of heat treatment rejuvenation in improving microstructure and mechanical properties of service-degraded components.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 270-283, February 25–28, 2025,
Abstract
View Papertitled, Investigation into Creep Strength of Inconel Alloy 740H Thin-Walled Welded Tubing for Concentrating Solar Power Applications
View
PDF
for content titled, Investigation into Creep Strength of Inconel Alloy 740H Thin-Walled Welded Tubing for Concentrating Solar Power Applications
To improve the economics of critical components, such as receivers and heat exchangers, for Generation 3 (Gen 3) concentrating solar power (CSP) plants, research was conducted to understand how manufacturing impacts the high-temperature performance of various tube production routes. Gen 3 CSP components are expected to require the use of heat-resistant nickel- based alloys due to the elevated operating temperatures in designs carrying molten salt or supercritical CO 2 . INCONEL alloy 740H (alloy 740H) was investigated as an alternative to UNS N06230 (alloy 230) as it possesses superior high-temperature creep strength which can lead to overall reductions in material cost. A key challenge is understanding how autogenous seam welding with and without re-drawing can be used to manufacture thin-wall tubing for CSP receivers and heat-exchangers to further reduce costs over traditional seamless production routes. Alloy 740H welded tube was successfully fabricated and re-drawn to several relevant tube sizes. Since traditional mechanical testing samples could not be removed from the thin-wall tubing, full-sized tubes were used for tensile, fatigue, and vessel testing (internally pressurized creep- rupture) which was critical to understanding the weld performance of the manufactured product forms. The generated vessel test data exhibited a creep strength reduction when compared to wrought product with no clear trend with temperature or test duration. It was found that redrawing the welded tubes improved the creep strength to approximately 82% of the wrought material performance and elevated temperature tensile and fatigue behavior exceeded 85% of the design minimums. Detailed, post-test characterization found that nano-sized carbides formed during the laser seam-welding process remained stable after multiple solution-annealing steps, which restricted grain growth, and impacted the time-dependent performance. This paper will focus on the time-dependent behavior of the examined welded and redrawn tubes, supporting metallographic evidence, and give perspective on future considerations for using alloy 740H in CSP components.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 441-448, February 25–28, 2025,
Abstract
View Papertitled, Creep Behaviors of Alloy 718 Type Ni-Based Superalloys
View
PDF
for content titled, Creep Behaviors of Alloy 718 Type Ni-Based Superalloys
Alloy 718 is an important class of Nb-bearing Ni-based superalloys for high-temperature applications, such as compressor disks/blades and turbine disks in gas turbine systems. The service temperature of this alloy is, however, limited below 650 °C probably due to the degradation of its strengthening phase γ"-Ni3Nb. Aiming at understanding and improving creep properties of 718-type alloys, we investigated creep behaviors of alloy 718 and alloy Ta-718 where different types of γ" phases, Ni3Nb and Ni3Ta, were precipitated, respectively. Creep tests were conducted at 700 °C under stress conditions of 400 and 500 MPa for the two alloys in aged conditions. It was found that while the minimum creep rates were comparable in the two alloys, the creep rate acceleration was lower in alloy Ta-718 than in alloy 718 under the creep conditions studied. Microstructural observations on the specimens before and after the creep tests suggested that the γ" precipitates were distinguishably finer in alloy Ta-718 than in alloy 718 throughout the creep tests. The formation of planar defects and shearing of γ" precipitates occurred frequently in the alloy 718 specimen. The observed creep deformations were discussed in terms of the critical resolved shear stress due to shearing of γ" particles by strongly paired dislocations.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 461-472, February 25–28, 2025,
Abstract
View Papertitled, Creep Rupture Strength and Ductility of Grade 92 Steel
View
PDF
for content titled, Creep Rupture Strength and Ductility of Grade 92 Steel
This study aims to elucidate the chemical compositions and microstructural factors that affect longterm creep rupture strength and creep rupture ductility using multiple heats of Gr.92 steel. Evaluating the reduction behavior in long-term creep rupture strength, we propose a relative creep rupture strength value, which is expressed as the logarithmic ratio of the estimated creep strength for each rupture time exceeding 10,000 hours, with 10,000 hours as the reference. Higher initial hardness correlates with greater pronounced strength reduction in the long-term regime. While smaller prior austenite grain sizes lead to greater reductions in creep rupture strength, this effect diminishes above 30 μm. However, no clear correlation was observed between Cr content and creep strength reduction in this study. Brittle creep ruptures with smooth test specimens were observed just below the extensometer ridge in the parallel section of test specimen, indicating notch weakening. Even in heats with excellent creep ductility, the amount of inclusions tended to be higher than in heats with lower creep ductility. Factors other than inclusions also seem to influence long-term creep ductility.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 483-494, February 25–28, 2025,
Abstract
View Papertitled, Atmosphere Influence on the Fatigue Crack Growth Behavior of Wrought, Cast and PBF-LB/M Processed IN718 under Different Loading Conditions at 650 °C
View
PDF
for content titled, Atmosphere Influence on the Fatigue Crack Growth Behavior of Wrought, Cast and PBF-LB/M Processed IN718 under Different Loading Conditions at 650 °C
For the safe life prediction of components under high cycle fatigue loading at high temperature, such as gas turbine blades and turbocharger components, the behavior of initial defects, which are physically short cracks below the long crack threshold ΔK is of crucial importance. The evolution of different crack closure mechanisms (such as plasticity, roughness and oxide induced crack closure) can lead to crack arrest by a reduction of the effective crack tip loading. To visualize the crack growth behavior of such cracks, cyclic crack resistance curves (cyclic R-curves) are used. The experimental determination of cyclic R-curves is challenging, especially under high temperature conditions due to a lack of optical accessibility. The formation of very short cracks in high strength materials makes it even more complicated to reliably determine these data. Within this study the crack growth behavior of physically short fatigue cracks in three different material states of the nickel alloy IN718 (wrought, cast and PBF-LB/M - processed) is experimentally determined at 650 °C. Based on a load increase procedure applied on Single Edge Notched (SEN) specimens with a compression pre-cracking procedure in advance, crack propagation of physically short cracks is measured with alternating current potential drop systems in air and under vacuum conditions. These examinations are carried out for three different load ratios (R = -1, 0 and 0.5) to investigate the amount of certain crack closure mechanisms active under different loading conditions. Moreover, the formation of a plastic wake along the crack flanks is determined by a finite element simulation. The results determined in air and under vacuum conditions are used to describe the impact of oxide induced crack closure on the behavior of physically short cracks. This allows the evaluation of the behavior of both near-surface and internal defects that are not accessible to the atmosphere.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 495-506, February 25–28, 2025,
Abstract
View Papertitled, Wire Arc Additive Manufacturing of Creep Strength Enhanced Ferritic Steels and Nickel Alloys
View
PDF
for content titled, Wire Arc Additive Manufacturing of Creep Strength Enhanced Ferritic Steels and Nickel Alloys
Additive manufacturing is a groundbreaking manufacturing method that enables nearly lossless processing of high-value materials and produces complex components with a level of flexibility that traditional methods cannot achieve. Wire arc additive manufacturing (WAAM), utilizing a conventional welding process such as gas metal arc welding, is one of the most efficient additive manufacturing technologies. The WAAM process is fully automated and guided by CAD/CAM systems on robotic or CNC welding platforms. This paper explores the fundamental concepts and metallurgical characteristics of WAAM. It focuses primarily on the mechanical properties of printed sample structures made from P91, X20, and alloys 625 and 718 wire feedstock. The study particularly addresses the anisotropy of mechanical properties through both short-term and long-term testing, comparing these results to materials processed using conventional methods.
Proceedings Papers
Microstructural Analysis of MoSiBTiC Alloys Based on Scanning Electron Microscopy Image Segmentation
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 507-516, February 25–28, 2025,
Abstract
View Papertitled, Microstructural Analysis of MoSiBTiC Alloys Based on Scanning Electron Microscopy Image Segmentation
View
PDF
for content titled, Microstructural Analysis of MoSiBTiC Alloys Based on Scanning Electron Microscopy Image Segmentation
The microstructure of MoSiBTiC alloys is very complex, with three to four constituent phases and characteristic structures such as fine precipitates and lamellar structures. To perform the microstructural analysis efficiently, image segmentation was first performed for each phase of the microstructural images. Utilizing the Trainable Weka Segmentation method based on machine learning, the required segmentation time was dramatically reduced. Furthermore, by pre-adjusting the contrast of the images, the segmentation could be performed accurately for gray phases with different shades of gray. In addition, the U-Net method, based on deep learning, could perform highly accurate segmentation of characteristic microstructures consisting of multiple phases. The correlations between microstructural features and hardness were investigated using the segmented images in this study. The findings revealed that the volume fraction of each phase and the number of TiC clusters within the field of view significantly influenced hardness. This suggests that the hardness of MoSiBTiC alloys may be controlled by controlling the amount of TiC precipitates.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 517-527, February 25–28, 2025,
Abstract
View Papertitled, Fatigue Properties of High-Performance Ferritic (HiperFer) Steels
View
PDF
for content titled, Fatigue Properties of High-Performance Ferritic (HiperFer) Steels
High-performance Ferritic (HiperFer) steels represent a promising materials innovation for next-generation thermal energy conversion systems, particularly in cyclically operating applications like concentrating solar thermal plants and heat storage power plants (Carnot batteries), where current market adoption is hindered by the lack of cost-effective, high-performance materials. HiperFer steels demonstrate superior fatigue resistance, creep strength, and corrosion resistance compared to conventional ferritic-martensitic 9-12 Cr steels and some austenitic stainless steels, making them potentially transformative for future energy technologies. This paper examines the microstructural mechanisms underlying HiperFer’s enhanced fatigue resistance in both short and long crack propagation, while also presenting current findings on salt corrosion properties and exploring potential alloying improvements for fusion reactor applications, highlighting the broad technical relevance of these innovative materials.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 528-539, February 25–28, 2025,
Abstract
View Papertitled, Damage of Rankine Cycle Components in Concentrated Solar Power Plants
View
PDF
for content titled, Damage of Rankine Cycle Components in Concentrated Solar Power Plants
The steam generation systems (SGS) of concentrated solar power (CSP) plants employ multiple heat exchangers arranged in series to convert thermal energy collected from the sun via a heat transfer fluid (HTF) to produce superheated steam in the Rankine cycle. Common CSP plant designs are based either on parabolic trough or central tower technology. The major Rankine cycle components consist of preheaters, evaporators, steam drums, superheaters, steam turbines, and water/air-cooled condensers, all connected through steel piping. For CSP plants capable of reheating the steam for improved efficiency, reheaters are also included in the Rankine cycle. In central tower design with directly heated water as the HTF, the receiver can also be considered part of the Rankine cycle. Operating experiences of CSP plants indicate that plant reliability is significantly impacted by failures in various components of the Rankine cycle. Many damage mechanisms have been identified, which include corrosion, thermal fatigue, creep, and stress corrosion cracking, among others. Much of the damage can be attributed to poor water/steam chemistry and inadequate temperature control. While damage in the Rankine cycle components is common, there is generally lack of comprehensive guidelines created specifically for the operation of these CSP components. Therefore, to improve CSP plant reliability and profitability, it is necessary to better understand the various damage mechanisms experienced by linking them to specific operating conditions, followed by developing a “theory and practice” guideline document for the CSP operators, so that failures in the Rankine cycle components can be minimized. In a major research project sponsored by the U.S. Department of Energy (DOE), effort is being undertaken by EPRI to develop such a guideline document exclusively for the CSP industry. This paper provides an overview of the ongoing DOE project along with a few examples of component failures experienced in the Rankine cycle.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 561-572, February 25–28, 2025,
Abstract
View Papertitled, Creep Property of Long-term Service Exposed T23-347H Dissimilar Welded Joint
View
PDF
for content titled, Creep Property of Long-term Service Exposed T23-347H Dissimilar Welded Joint
This study conducted creep tests, microstructural, and hardness analyses on SA213T23-TP347H dissimilar weld joints of long-term serviced coal-fired boiler final superheater tube. The welded joint (SA213 T23-TP347H) of the superheater tube, after approximately 105,000 hours of service, was sampled for creep life assessment and maintenance planning. Creep tests were conducted at 600°C under three stress conditions: 100, 140, and 160MPa. Most cracks were observed in the heat-affected zone of T23, and compared to unused tubes, the creep life consumption rate was approximately 90%. All dissimilar weld joints used welding rods similar in chemical composition to T23, and significant hardness reduction occurred in the flame-affected zone.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 573-581, February 25–28, 2025,
Abstract
View Papertitled, Assessment of Super Duplex Stainless Steel Welding using Hyper Duplex Filler Metal: Microstructure and Corrosion Performance
View
PDF
for content titled, Assessment of Super Duplex Stainless Steel Welding using Hyper Duplex Filler Metal: Microstructure and Corrosion Performance
Super Duplex stainless steels (SDSS) are alloys based on the Fe-Cr-Ni-N system. The chemical composition is tailored to achieve a balanced microstructure of 50% ferrite and 50% austenite. Hyper Duplex Stainless Steels (HDSS) are also duplex materials distinguished by their remarkable yield strength (≥700 MPa) and corrosion resistance (PREN>48). They have been developed as an alternative to the well-established SDSS when superior mechanical and corrosion performance is required. This enhanced performance is attributed to alloying additions, primarily Cr, Mo, and N. In this study, a comparison is conducted between filler metals of SDSS and HDSS for the root welding of SDSS plates. The gas tungsten arc welding (GTAW) process was used to carry out root welding passes and Gas Metal Arc Welding (GMAW) for filling passes on SDSS substrates arranged in a V groove to simulate a repair scenario. The heat input was controlled in both processes, keeping it below 2.0 kJ/mm in the GTAW and 1.2 kJ/mm in the GMAW. GTAW with constant current was used and the parameters achieved producing full penetration welds with SDSS and HDSS. In this case, Nitrogen was used as backing gas to avoid oxidation of the root. Thus, a special GMAW-Pulsed version was applied to achieve good wettability and defect-free joints. ASTM G48 tests were performed to evaluate the corrosion resistance through Critical Pitting Testing (CPT) analysis on the root pass, microstructural analysis via optical microscopy, and impact toughness. Consequently, a comprehensive examination of the welded joints outlines manufacturing conditions, limitations, and the applications of SDSS and HDSS filler metals.
1