Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-4 of 4
Process modeling and simulation
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 247-259, October 11–14, 2016,
Abstract
View Paper
PDF
A material test loop has been installed at GKM Mannheim, which enables thick-walled components of future highly-efficient power plants to be exposed to steam temperatures of up to 725 °C. The project goal was to demonstrate the feasibility of a 700 °C power plant.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 260-270, October 11–14, 2016,
Abstract
View Paper
PDF
In the test loop HWT II (High Temperature Materials Test Loop) installed in the fossil power plant Grosskraftwerk (GKM) Mannheim in Germany, thick-walled components made of nickel base alloys were operated up to temperature of 725 °C. The operation mode chosen (creep-fatigue) was to simulate a large number of start-ups and shutdowns with high gradients as expected for future high efficient and flexible power plants and to investigate the damage due to thermal fatigue of the used nickel base alloys. In this paper the damage evolution of a header made of the nickel base alloys Alloy 617 B and Alloy C263, which was a part of HWT II test rig, were investigated using nondestructive and destructive techniques. Furthermore, the damage has been considered and evaluated by using numerical methods. In addition, different lifetime assessment methods of standards and recommendations with focus on creep-fatigue damage were used and evaluated. The different lifetime models are applied to the header and the results were compared to the results of metallographic investigations and damage observations.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 1163-1172, October 22–25, 2013,
Abstract
View Paper
PDF
25Cr-20Ni-Nb-N (Tp310HCbN) steel is a promising austenitic steel for applications in superheater tubes in coal fired thermal power plants due to the high creep strength and oxidation resistance. In this work, the microstructural evolution of this material during heat treatment and thermal ageing has been investigated. The investigations were carried out by Light Optical Microscopy (LOM), Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM) and Energy Dispersive Spectroscopy (EDS). Besides, equilibrium and Scheil calculations were carried out using the thermodynamic software MatCalc to analyse the stable phases and the solidification process, respectively. Precipitation calculations during solution annealing and subsequent ageing at 650 and 750°C were performed to predict the phase fraction and precipitates radius up to 10.000h ageing time. SEM and TEM investigations of aged specimens revealed the presence of six different precipitates: M 23 C 6 , Cr 2 N, sigma, Z-phase, eta-phase (Cr 3 Ni 2 Si(C,N)) and Nb(C,N). These precipitates were predicted and confirmed by MatCalc simulations. The calculated phase fraction and mean radius show good agreement with experimental data. Finally, simulations of different Cr-, C- and N-content in Tp310HCbN were performed.
Proceedings Papers
AM-EPRI2010, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Sixth International Conference, 255-267, August 31–September 3, 2010,
Abstract
View Paper
PDF
This paper outlines a comprehensive UK-based research project (2007-2010) focused on developing fireside corrosion models for heat exchangers in ultra-supercritical plants. The study evaluates both conventional materials like T22 and advanced materials such as Super 304H, examining their behavior under various test environments with metal skin temperatures ranging from 425°C to 680°C. The research aims to generate high-quality data on corrosion behavior for materials used in both furnace and convection sections, ultimately producing reliable corrosion prediction models for boiler tube materials operating under demanding conditions. The project addresses some limitations of existing models for these new service conditions and provides a brief review of the fuels and test environments used in the program. Although modeling is still limited, preliminary results have been presented, focusing on predicting fireside corrosion rates for furnace walls, superheaters, and reheaters under various service environments. These environments include those created by oxyfuel operation, coal-biomass co-firing, and more traditional coal firing.