Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Subjects
Article Type
Volume Subject Area
Date
Availability
1-2 of 2
Chemical compatibility
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 930-938, October 21–24, 2019,
Abstract
View Papertitled, Effect of Impurities in CO 2 at Supercritical Pressure on Alloy Compatibility
View
PDF
for content titled, Effect of Impurities in CO 2 at Supercritical Pressure on Alloy Compatibility
Direct-fired supercritical CO 2 (sCO 2 ) cycles are expected to result in sCO 2 with higher impurity levels compared to indirect-fired cycles. Prior work at ambient pressure showed minimal effects of O 2 and H 2 O additions, however, a new experimental rig has been built to have flowing controlled impurity levels at supercritical pressures at ≤800°C. Based on industry input, the first experiment was conducted at 750°C/300 bar in CO 2 +1%O 2 -0.25%H 2 O using 500-h cycles for up to 5,000 h. Compared to research grade sCO 2 , the results indicate faster reaction rates for Fe-based alloys like 310HN and smaller increases for Ni-based alloys like alloys 617B and 282. It is difficult to quantify the 310HN rate increase because of scale spallation. Characterization of the 5,000 h specimens indicated a thicker reaction product formed, which has not been observed in previous impurity studies at ambient pressure. These results suggest that more studies of impurity effects are needed at supercritical pressures including steels at lower temperatures.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 844-854, October 11–14, 2016,
Abstract
View Papertitled, The Effect of Impurities on Supercritical CO 2 Compatibility of Structural Alloys
View
PDF
for content titled, The Effect of Impurities on Supercritical CO 2 Compatibility of Structural Alloys
In both direct- and indirect-fired supercritical CO 2 (sCO 2 ) cycles, there is considerable interest in increasing the size and efficiency of such systems, perhaps by increasing the peak temperature to >700°C. However, relatively little experimental data are available under these conditions with pressures of 200-300 bar. Furthermore, impurities such as O 2 and H 2 O in the CO 2 may greatly alter the compatibility of structural alloys in these environments. While an experimental rig is being constructed that can measure and control the impurity levels in sCO 2 at 200-300 bar, initial 1 bar experiments at 700°-800°C for 500 h have been conducted in high-purity and industrial grade CO 2 , CO 2 +0.15O 2 and CO 2 +10%H 2 O and compared to exposures in dry air and 200 bar sCO 2 . These results, focusing on Fe- and Ni-base structural alloys and commercial chromia- and alumina-forming alloys, indicate that modifications in the environment did not strongly affect the reaction products at 700°-800°C.