Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-3 of 3
Atom probe tomography
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 205-216, October 21–24, 2019,
Abstract
View Paper
PDF
The newly developed 12%Cr steel Super VM12 is characterized by excellent creep rupture strength properties (better than Grade 92) and enhanced steam oxidation resistance of 12%Cr steels such as VM12-SHC. Balanced properties profile of the new steel development in comparison to the existing well-established steels such as Grade 91 and Grade 92, opens opportunities for its application as construction material for components in existing or future high-efficiency power plants. In this study the oxidation behavior of typical 9%Cr steels was compared with the new steel development. The oxide scale morphologies and compositions of different oxide layers as function of temperature and exposure time in steam-containing atmospheres were characterized using light optical metallography, Scanning Electron Microscopy (SEM). Creep testing has been carried out in the temperature range between 525°C and 700°C. Selected creep specimens were investigated using the Transmission Electron Microscopy and the Atom Probe Tomography techniques.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 880-891, October 21–24, 2019,
Abstract
View Paper
PDF
The Alloys-by-Design approach, involving large-scale CALPHAD calculations to search a compositional range, has been used to isolate a suitable nickel-based superalloy for additive manufacturing (AM) by optimizing the trade-off between processability and increasing strength. This has been done in response to the limited focus on development of new superalloys designed to overcome the limitations of the AM process, specifically the high defect density of parts made from high-performance alloys. Selected compositions have been made using gas atomization, and laser powder-bed fusion AM trials were performed. The resulting properties were evaluated in the as-processed, heat treated and thermally exposed conditions. The assessment, combined with characterization techniques including scanning electron microscopy and atom probe tomography, rationalizes a temperature capability up to and above 850 °C, and demonstrate the opportunity to develop alloys with properties beyond the current state of the art.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 1116-1126, October 22–25, 2013,
Abstract
View Paper
PDF
Two Z-phase strengthened test steels with similar chemical composition were studied. The main difference in composition is the addition of 1 wt% Cu into one of the steels (referred to as “ZCu”). Mechanical testing was performed. The impact strength is very different: 3 J vs. 46.3 J, for the original and the Z-Cu steel, respectively. In the original steel that contains no Cu, much more Laves-phase (Fe 2 (W,Mo)) precipitates had formed along the prior austenite grain boundaries than in the steel with Cu addition. This is believed to be the reason for the difference in impact strength. Furthermore, the Cu addition also influenced the morphology of Laves-phase precipitates; fine rod-shaped instead of coarse equiaxed Laves-phase particles were observed in Z-Cu steel in comparison to the original steel. No partitioning of Cu into the Laves-phase particles was detected by using atom probe tomography (APT). The main function of Cu seems to be the formation of Cu precipitates that act as nucleation site for Laves-phase.