Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-20 of 22
Tempering
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 365-372, February 25–28, 2025,
Abstract
View Papertitled, Microstructure of Modified 9Cr-1Mo Steel Manufactured via Laser Powder Bed Fusion
View
PDF
for content titled, Microstructure of Modified 9Cr-1Mo Steel Manufactured via Laser Powder Bed Fusion
Modified 9Cr-1Mo steel was manufactured via laser powder bed fusion (LPBF) using gas atomized powders under various building conditions. Dense samples were obtained at an energy density of 111-125 J/mm 3 . As-built samples were subjected to a normalization and tempering heat treatments. The microstructure of the as-built sample exhibits a duplex structure, comprising coarse columnar δ-ferrite grains and fine martensite grains. In addition, a small amount of retained austenite phase was observed at the interface between δ-ferrite and martensite. The formation of δ-ferrite is attributed to the extremely rapid solidification that occurs during the LPBF process, while martensite is obtained through the phase transformation because of the thermal cycles experienced during the process. The area fraction of δ-ferrite and martensite can be controlled by adjusting the LPBF parameters. Typical as-built microstructure morphology characterized by the columnar δ- ferrite was eliminated after the heat treatments, resulting in a tempered martensitic microstructure that is identical with that obtained through the conventional process. However, an increase in prior austenite grain size was observed when the area fraction of δ-ferrite in the as-built condition was high, due to faster phase transformation kinetics of martensite than that of δ-ferrite during the normalization. This suggests that the prior austenite grain size can be controlled by optimizing the area fraction of δ-ferrite and martensite in the as-built microstructure.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 552-560, February 25–28, 2025,
Abstract
View Papertitled, Analysis of Crystal Structure in Temper Embrittled 12% Cr Turbine Blade Steel
View
PDF
for content titled, Analysis of Crystal Structure in Temper Embrittled 12% Cr Turbine Blade Steel
This study investigates the mechanisms of temper embrittlement in 410 martensitic stainless steel, a material widely used in steam turbine blades due to its excellent corrosion resistance and high strength achieved through quenching and tempering heat treatments. While the material’s hardness and impact toughness strongly depend on tempering temperatures, significant embrittlement occurs around 540°C, manifesting as decreased Charpy impact energy alongside increased strength and hardness. To understand this phenomenon at the nanometer scale, high-resolution transmission electron microscopy (TEM) analysis was performed, focusing on electron diffraction patterns along the <110>α-Fe and <113>α-Fe zone axes. The analysis revealed distinctive double electron diffraction spots at 1/3(211) and 2/3(211) positions, with lattice spacing of approximately 3.5 Å—triple the typical α-bcc lattice spacing (1.17 Å). These regions were identified as metastable “zones” resembling ω-phase structures, potentially responsible for the embrittlement. While this newly identified phase structure may not fully explain the complex mechanisms of temper embrittlement, it provides valuable insights for developing improved alloying and heat treatment methods to mitigate embrittlement in martensitic steels.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 623-634, February 25–28, 2025,
Abstract
View Papertitled, Improvements in Creep Ductility of the UK Cast MarBN Steel, IBN-1
View
PDF
for content titled, Improvements in Creep Ductility of the UK Cast MarBN Steel, IBN-1
MarBN steels, originally developed by Professor Fujio Abe at NIMS Japan, have undergone significant advancement in the UK through a series of government-funded collaborative projects (IMPACT, IMPEL, INMAP, IMPULSE, and IMPLANT). These initiatives have achieved several major milestones, including operational power plant trials, full-scale extruded pipe production, matching welding consumable development, and most notably, the creation of IBN-1—a new steel demonstrating 30-45% higher creep strength than Grade 92. However, like other creep strength-enhanced ferritic steels, IBN-1 shows reduced creep ductility under the lower stress conditions typical of operational use. Since adequate creep ductility is essential for component damage tolerance and effective in-service monitoring, this study investigates the effects of an alternative normalizing and tempering heat treatment on cast IBN-1. The research presents creep rupture test results showing improved ductility and analyzes the microstructural mechanisms responsible for this enhancement.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 855-860, February 25–28, 2025,
Abstract
View Papertitled, Weld Process Effects on Fatigue Performance in the Repair of Coke Drums
View
PDF
for content titled, Weld Process Effects on Fatigue Performance in the Repair of Coke Drums
Coke drums experience failures in through-wall cracking throughout their operating life, resulting from low cycle fatigue. Coke drums are typically fabricated from Chrome Moly (CrMo) steels. This study was performed on P4 (1.25Cr-0.5Mo) base material using ER70S-B2L and Alloy 625 (ERNiCrMo-3) filler materials. Specimens were welded with the temper-bead/controlled deposition welding technique. The weld processes used were HP-GTAW, GMAW and SMAW. The fatigue performance, HAZ hardness and toughness of the weld samples was evaluated. The HP-GTAW welds exhibited an order of magnitude improvement in fatigue performance when compared to the other weld processes using ER70S-B2L filler material. The HP-GTAW welds also exhibited improved HAZ hardness and toughness when compared to the other weld processes. This presentation will introduce the HP-GTAW process, its features, and benefits and where it is applied in Coke drum repair welding. Comparative test results of the different weld processes for fatigue performance, HAZ tempering, and toughness will also be presented.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 116-122, October 21–24, 2019,
Abstract
View Papertitled, Effect of Heat Treatment on Microstructure and Mechanical Properties of an Advanced Ta-Alloyed 9%Cr Steel
View
PDF
for content titled, Effect of Heat Treatment on Microstructure and Mechanical Properties of an Advanced Ta-Alloyed 9%Cr Steel
The microstructures of an advanced Ta-added 9Cr-3Co-2W-Mo steel with increased boron content that has been homogenized at different temperatures were investigated. The chains of coarse W-rich particles were observed in the steel after homogenization at 1150°C for 24 h. These particles remained in the microstructure after normalization and tempering. Such additional dispersion hardening in the initial state of the studied steel decreased the creep rate in transient region. However, the duration of steady state creep and overall creep time was increased in the samples homogenized at 1200°C. Despite of the presence of coarse W-rich particles, the impact toughness of the low-temperature- homogenized steel in the tempered condition was significantly higher than that of the steel homogenized at 1200°C
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 143-155, October 21–24, 2019,
Abstract
View Papertitled, Influence of Manufacturing Process Parameters on 9-12% Cr Ferritic Steel Performance
View
PDF
for content titled, Influence of Manufacturing Process Parameters on 9-12% Cr Ferritic Steel Performance
Modified 9Cr-1Mo alloy steel has been developed over the last few decades and has since gained wide acceptance in the boiler industry for the production of a variety of pressure-critical components, including tubing, piping and headers. The properties of creep-strength enhanced ferritic steels such as grade 91 are critically dependent on manufacturing parameters such as steelmaking, hot deformation, heat treatment and welding. Since the applications for which this material is used impose strict requirements in terms of resistance, corrosion, and creep behavior, poor process control can severely compromise the service behavior. This work discusses the impact of total deformation during the rolling process, and heat treatment parameters on time-independent and time-dependent properties for grade 91. For this study, two heats with similar chemical composition were produced with different reduction ratios: to which, several normalizing and tempering combinations were applied. For each combination, the microstructure was characterized, including evaluation of segregation by metallographic examination, and analysis of secondary phase precipitates by means of X-ray powder diffraction. Mechanical testing and creep testing were performed. A comparison of results is presented, and recommendations on the optimal process parameters are provided to ensure reliable performance of grade 91 material.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 185-196, October 21–24, 2019,
Abstract
View Papertitled, Degradation Mechanism of Long-Term Creep Rupture Strength in Gr.23 (2.25Cr-1.6W) Steel
View
PDF
for content titled, Degradation Mechanism of Long-Term Creep Rupture Strength in Gr.23 (2.25Cr-1.6W) Steel
Creep strength degradation behavior of normalized and tempered 2.25Cr-1.6W-V-Nb(Gr.23) steel was investigated by conducting extra long-term creep rupture tests. Creep strength drop was observed in long-term creep range at 600°C and above, while signs of a creep strength drop were not identified at 550°C and 575°C. Creep strength drop of around 110 MPa at 600°C was caused not by the effect of oxidation but rather by a change of the deformation mechanism or the weakening of deformation resistance by the microstructural change during creep. The effect of oxidation was significant for causing a further creep strength drop in the range which exceeded 20,000 h in rupture time at 600°C. As a result, the creep strength at 60 MPa and 600°C was almost the same regardless of long tempered or aged steel.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 227-234, October 21–24, 2019,
Abstract
View Papertitled, On the Precipitation of the Laves Phase Particles in a Martensitic 10% Cr-3% Co-3% W-0.2% Re Steel during Creep at 650°C
View
PDF
for content titled, On the Precipitation of the Laves Phase Particles in a Martensitic 10% Cr-3% Co-3% W-0.2% Re Steel during Creep at 650°C
The size and distribution of the Laves phase particles in a 9.85Cr-3Co-3W-0.13Mo-0.17Re- 0.03Ni-0.23V-0.07Nb-0.1C-0.002N-0.008B steel subjected to creep rupture test at 650°C under an applied stresses of 160-200 MPa with a step of 20 MPa were studied. After heat treatment consisting of normalizing of 1050°C and tempering of 770°C, M 23 C 6 and Fe 3 W 3 C carbides with the mean sizes of 67±7 and 40±5 nm, respectively, were revealed along the boundaries of prior austenite grains and martensitic laths whereas round NbX carbonitrides were found within martensitic laths. During creep metastable Fe 3 W 3 C carbides dissolved and the stable Laves phase particles precipitated; volume fraction of Laves phase increases with time. The Laves phase particles nucleated on the interfacial boundaries Fe 3 W 3 C/ferrite during first 100 h of creep and provided effective stabilization of tempered martensitic lath structure until their mean size less than 150 nm.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 74-89, October 11–14, 2016,
Abstract
View Papertitled, Component Relevant Creep Damage in Tempered Martensitic 9 to 12 %Cr Steels
View
PDF
for content titled, Component Relevant Creep Damage in Tempered Martensitic 9 to 12 %Cr Steels
Creep brittle behaviour in tempered martensitic, creep strength enhanced ferritic (CSEF) steels is linked to the formation of micro voids. Details of the number of voids formed, and the tendency for reductions in creep strain to fracture are different for the different CSEF steels. However, it appears that the susceptibility for void nucleation is related to the presence of trace elements and hard non-metallic inclusions in the base steel. A key factor in determining whether the inclusions present will nucleate voids is the particle size. Thus, only inclusions of a sufficient size (the critical inclusion size is directly linked to the creep stress) will act directly as nucleation sites. This paper compares results from traditional uniaxial laboratory creep testing with data obtained under multiaxial conditions. The need to understand and quantify how metallurgical and structural factors interact to influence creep damage and cracking is discussed and the significant benefits available through the use of high quality steel making and fabrication procedures are highlighted. Details of component behaviour are considered as part of well-engineered, Damage Tolerant, design methods.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 429-439, October 11–14, 2016,
Abstract
View Papertitled, Influence of Holding Time During Tempering on the Long-Term Creep Rupture Strength of MOD.9Cr-1Mo Steel
View
PDF
for content titled, Influence of Holding Time During Tempering on the Long-Term Creep Rupture Strength of MOD.9Cr-1Mo Steel
The influence of holding time during tempering on the long-term creep rupture strength of mod.9Cr-1Mo steel was investigated in this study, so as to elucidate proper heat treatment for boiler applications. Tempering was conducted at 770°C for 0.5h, 1h, 3h, 10h and 100h for the test materials, after re-normalization at 1050°C for 1h in all cases. Creep rupture tests were conducted at 600°C, and ruptured specimens were investigated to better understand the microstructural changes, including changes in the number density of precipitates, in order to observe and discuss their creep strength. All creep rupture test results for materials tempered within 10h exceeded the average creep strength of T91. Shorter tempering times such as 0.5h and 1h were clearly correlated with longer time to rupture at 600°C under 80MPa to 100MPa stress conditions. Reduction of area in creep-ruptured specimens decreased principally with lowered creep stress. Materials tempered for 0.5h and 100h showed the lowest reduction of area at 90MPa and 100MPa respectively, and their reduction of area recovered at lower than those stress levels. These stresses, showing minimum reduction of area, met inflection stress in the creep rupture strength curve.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 478-485, October 11–14, 2016,
Abstract
View Papertitled, Structural Changes in P92-Type Martensitic Steel During Creep at 600°C
View
PDF
for content titled, Structural Changes in P92-Type Martensitic Steel During Creep at 600°C
Structural changes in P92-type steel after creep at temperature of 600°C under a stress of 140 MPa were investigated. The steel was solution treated at 1050°C and tempered at 780°C. The structure in the grip portion of the creep specimen changed scarcely after creep exposure for 6876 h. In contrast, the structural changes in the gage and neck sections were characterized by transformation of the tempered martensite lath structure into relatively coarse subgrain structure. The formation of a well-defined subgrain structure in the gage and neck sections was accompanied by the coarsening of M 23 C 6 carbides and precipitations of Laves phase during creep. Mechanisms of grain boundary pinning by precipitates are discussed.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 714-722, October 11–14, 2016,
Abstract
View Papertitled, Microstructural Changes in GX12CRMOWVNBN10-1-1 Steel During Creep at 893 K
View
PDF
for content titled, Microstructural Changes in GX12CRMOWVNBN10-1-1 Steel During Creep at 893 K
Microstructure in the gage sections of ruptured GX12CrMoWVNbN10-1-1 cast steel specimens was examined after creep tests under applied stresses ranging from 120 to 160 MPa at T=893 K. The microstructure after tempering consisted of laths with an average thickness of 332 nm. The tempered martensite lath structure was characterized by M 23 C 6 -type carbide particles with an average size of about 105 nm, and MX carbonitrides with an average size of about 45 nm. Precipitation of Laves phase occurred during creep test. The structural changes in the gauge section of the samples were characterized by the evolution of relatively large subgrains with remarkably lowered density of interior dislocations within former martensite laths. MX carbonitrides and M 23 C 6 -type carbide particles increase in size slightly under long-term creep. Microstructural degradation mechanisms during creep in GX12CrMoWVNbN10-1-1 cast steel are discussed.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 513-524, October 22–25, 2013,
Abstract
View Papertitled, Material Behavior of T23 and T24
View
PDF
for content titled, Material Behavior of T23 and T24
The use of the bainitic class of creep strength enhanced ferritic steels T/P23 and T24 has increased over the last decade in a wide range of applications including replacement headers, superheater and reheater tubing and in waterwall tubing. Many issues have been reported in one or both of these materials including hydrogen induced cracking, reheat cracking and stress corrosion cracking. To appropriately address these issues, work has been initiated that includes a literature review, development of a database of phase transformation temperatures, investigation of tempering behavior, and an analysis of the effect of phase transformation on residual stresses. Such information will be provided in the context of understanding why these two materials appear highly susceptible to these cracking mechanisms.
Proceedings Papers
Precipitation Strengthening by the Nitrides in High Cr Containing Ferritic Creep Resistant Steels
Free
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 1071-1080, October 22–25, 2013,
Abstract
View Papertitled, Precipitation Strengthening by the Nitrides in High Cr Containing Ferritic Creep Resistant Steels
View
PDF
for content titled, Precipitation Strengthening by the Nitrides in High Cr Containing Ferritic Creep Resistant Steels
High nitrogen steel was manufactured by solid state nitriding and Laminate- rolling at laboratory to study the nitride morphology and creep properties through the TEM, EPMA and creep strain test. Nitriding made the nitride dispersing steels possible. Solid state nitriding of thin plates and those laminate rolling enabled the high nitrogen containing thick plate steel. Precipitated coarse nitrides during the nitriding resolved by normalizing and re-precipitated by tempering finely. Needle type VN was detected in V containing high nitrogen steels. Its coherency seems to affect the creep strength significantly. V precipitated steels indicated the higher creep strength than the steels without VN precipitation. Thermodynamically stable precipitates like VN increases the creep rupture strength. Ti and Zr containing high nitrogen steels also will be evaluated and discussed by the presentation.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 1127-1138, October 22–25, 2013,
Abstract
View Papertitled, Alloy Design of Tempered Martensitic 9Cr-Boron Steel for A-USC Boilers
View
PDF
for content titled, Alloy Design of Tempered Martensitic 9Cr-Boron Steel for A-USC Boilers
The addition of boron without the formation of any boron nitrides during normalizing heat treatment at high temperature minimizes the degradation in creep strength of both base metal and welded joints of 9Cr steel at 650 °C and long times. The enrichment of soluble boron near prior austenite grain boundaries (PAGBs) by the segregation is essential for the reduction of coarsening rate of M 23 C 6 carbides in the vicinity of PAGBs, enhancing boundary and subboundary hardening, and also for the production of same microstructure between the base metal and heat-affected-zone (HAZ) in welded joints, indicating no Type IV fracture in HAZ. Excess addition of boron and nitrogen promotes the formation of boron nitrides during normalizing, which reduces the soluble boron concentration and accelerates the degradation in creep rupture ductility at long times. 9Cr- 3W-3Co-VNb steel with 120 - 150 ppm boron and 60 - 90 ppm nitrogen (MARBN) exhibits not only much higher creep strength of base metal than Gr.92 but also substantially no degradation in creep strength due to Type IV fracture at 650 °C. The pre-oxidation treatment in Ar gas promotes the formation of protective Cr 2 O 3 scale on the surface of 9Cr steel, which significantly improves the oxidation resistance in steam at 650 °C.
Proceedings Papers
Krzysztof Cieszyński, Władysław Osuch, Maciej Kaczorowski, Stanisław Fudali, Aleksandra Czyrska-Filemonowicz
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 1220-1231, October 22–25, 2013,
Abstract
View Papertitled, Microstructure and Properties of 12Cr2MoWVTiB Steel for Membrane Walls
View
PDF
for content titled, Microstructure and Properties of 12Cr2MoWVTiB Steel for Membrane Walls
Research on low-alloyed, heat-resistant 12Cr2MoWVTiB steel, implemented in China to power plants in 50’s last century, was performed to investigate a possibility of its application for pressure elements of boilers, in particular for membrane walls. The microstructure of the as-received 12Cr2MoWVTiB tube, investigated by light microscopy, scanning- and transmission electron microscopy, consists of ferritic grains with some bainite areas between them as well as primary carbides (MC) and secondary carbides (VC, M 23 C 6 , M 6 C) formed during tempering of the steel. Results of mechanical tests of 12Cr2MoWVTiB welded joints (butt- and fillet welded joints) as well as microstructure analyses of are satisfactory.
Proceedings Papers
AM-EPRI2010, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Sixth International Conference, 715-731, August 31–September 3, 2010,
Abstract
View Papertitled, Key Life Management Issues with Grade 91 Steel
View
PDF
for content titled, Key Life Management Issues with Grade 91 Steel
Recent evidence suggests that using hardness as the sole acceptance criterion for Grade 91 steels is inadequate for predicting service performance. Components can achieve acceptable initial hardness values through heat treatment despite suboptimal elemental composition, leading to poor tempering resistance and unexpectedly low creep strength during service. Paradoxically, some components with lower initial hardness may perform better due to slower degradation rates. While the relationship between parent material properties and Type IV cracking susceptibility remains under investigation, heat-affected zones (HAZ) in welds are emerging as primary locations for service failures. This complexity emphasizes the need for comprehensive evaluation criteria incorporating stress, temperature, and material properties when assessing component serviceability.
Proceedings Papers
AM-EPRI2010, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Sixth International Conference, 787-799, August 31–September 3, 2010,
Abstract
View Papertitled, The Effect of Simulated Post Weld Heat Treatment Temperature Overshoot on Microstructural Evolution in P91 and P92 Power Plant Steels
View
PDF
for content titled, The Effect of Simulated Post Weld Heat Treatment Temperature Overshoot on Microstructural Evolution in P91 and P92 Power Plant Steels
Creep strength enhanced ferritic (CSEF) steels, particularly modified 9Cr steels Grade 91 and 92, are increasingly used in advanced coal-fired power plants for header and steam piping construction. While these materials typically enter service after receiving a standard high-temperature normalizing treatment followed by lower temperature tempering to achieve optimal microstructure, practical situations like welding operations may expose components to additional heat treatment exceeding the Ac 1 , and potentially the Ac 3 , temperature before returning to tempering temperature. This research examines the effects of simulated post weld heat treatments (PWHT) on Grade 91 and 92 materials using dilatometer-controlled heating and cooling rates, with peak temperatures below Ac 1 , between Ac 1 and Ac 3 , and above Ac 3 , followed by heat treatment at 750°C for 2 hours. Hardness measurements revealed significant reduction when exceeding the Ac 1 temperature, while advanced electron microscopy, including electron back scatter diffraction, was employed to analyze changes in martensite laths and grain structure, along with detailed carbide size distribution analysis using both scanning and transmission electron microscopy. The findings are discussed in terms of how such PWHT overshoots might affect mechanical properties during high-temperature service.
Proceedings Papers
AM-EPRI2007, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fifth International Conference, 874-883, October 3–5, 2007,
Abstract
View Papertitled, Improvement of Creep Rupture Strength of 9Cr1MoNbV Welded Joints by Post Weld Normalizing and Tempering
View
PDF
for content titled, Improvement of Creep Rupture Strength of 9Cr1MoNbV Welded Joints by Post Weld Normalizing and Tempering
Recent years high strength 9Cr1MoNbV steel developed in USA has been major material in boiler high temperature components with the increase of steam parameters of coal fired thermal power plants. As the microstructure of this steel is tempered martensite, it is known that the softening occurs in HAZ of the weldment. In the creep rupture test of these welded joints the rupture strength is lower than that of the parent metal, and sometimes this reduction of strength is caused by TypelV cracking. To develop an effective method to improve the rupture strength of welded joint, advanced welding procedure and normalizing-tempering heat treatment after weld was proposed. 9Cr1MoNbV plates with thickness of 40-50mm were welded by 10mm width automatic narrow gap MAG welding procedure using specially modified welding material. After normalizing at 1,050°C and tempering at 780°C, material properties of the welded joints were examined. Microstructure of HAZ was improved as before weld, and rupture strength of the welded joints was equal to that of the parent metal. The long term rupture strength of the welded joints was confirmed in the test exceeded 30,000hours. This welding procedure has been applied to seam weld of hot reheat piping and headers in USC boilers successfully.
Proceedings Papers
AM-EPRI2004, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fourth International Conference, 1160-1167, October 25–28, 2004,
Abstract
View Papertitled, Effects of a New Thermo-mechanical Magnetic Heat Treatment Process on Creep Properties of High-Cr Ferritic Heat Resistant Steels
View
PDF
for content titled, Effects of a New Thermo-mechanical Magnetic Heat Treatment Process on Creep Properties of High-Cr Ferritic Heat Resistant Steels
Effect of thermomechanical and magnetic treatment on creep characteristics of advanced heat resistant ferritic steels for USC power plants has been investigated to explore fundamental guiding principles for improving creep rupture strength at elevated temperatures over 600°C. A model steel with a composition of Fe-0.08C-9Cr-3.3W-3Co-0.2V-0.05Nb-0.05N-0.005B-0.3Si-0.5Mn (in mass%) has been prepared by vacuum induction furnace. Creep tests at 650 °C and microstructural observations were performed on the thermomechanical and magnetic treated specimens after tempering. New thermomechanical treated samples without magnetic field showed some improvement in creep strength comparing with ordinarily normalized and tempered specimens. Further improvement was observed in the specimen that had been exposed to a magnetic field during transformation into the martensite. From the result of microstructural observation, it was found that the finely distributed precipitates such as MX and M 23 C 6 caused this improvement. And it was suggested that the magnetic treatment at martensitic transformation increase the precipitation sites during tempering, resulting in increasing the amount and preventing the growth of the precipitates.
1