Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-20 of 37
Scanning electron microscopy
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 171-182, February 25–28, 2025,
Abstract
View Papertitled, Steam Oxidation Resistance in a Long Term Exposure of the Modified Laser Powder Bed Fusion 699XA Alloy at High Temperature
View
PDF
for content titled, Steam Oxidation Resistance in a Long Term Exposure of the Modified Laser Powder Bed Fusion 699XA Alloy at High Temperature
This study investigates the steam oxidation behavior of Alloy 699 XA, a material containing 30 wt.% chromium and 2 wt.% aluminum that forms protective oxide scales in low-oxygen conditions. The research compares four variants of the alloy: conventional bulk material, a laser powder bed fusion (LPBF) additively manufactured version, and two modified compositions. The modified versions include MAC-UN-699-G, optimized for gamma-prime precipitation, and MAC-ISIN-699, which underwent in-situ internal nitridation during powder atomization. All variants were subjected to steam oxidation testing at 750°C and 950°C for up to 5000 hours, with interim analyses conducted at 2000 hours. The post-exposure analysis employed X-ray diffraction (XRD) to identify phase development and scanning electron microscopy with energy dispersive spectroscopy (SEM/EDS) to examine surface morphology, cross-sectional microstructure, and chemical composition. This study addresses a significant knowledge gap regarding the steam oxidation behavior of 699 XA alloy, particularly in its additively manufactured state.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 219-234, February 25–28, 2025,
Abstract
View Papertitled, Creep Cavitation Imaging and Analysis in 9%Cr-1%Mo P91 Steels
View
PDF
for content titled, Creep Cavitation Imaging and Analysis in 9%Cr-1%Mo P91 Steels
The current research adopts a novel approach by integrating correlative microscopy and machine learning in order to study creep cavitation in an ex-service 9%Cr 1%Mo Grade 91 ferritic steel. This method allows for a detailed investigation of the early stages of the creep life, enabling identification of features most prone to damage such as precipitates and the ferritic crystal structure. The microscopy techniques encompass Scanning Electron Microscopy (SEM) imaging and Electron Back-scattered Diffraction (EBSD) imaging, providing insights into the two-dimensional distribution of cavitation. A methodology for acquiring and analysing serial sectioning data employing a Plasma Focused Ion Beam (PFIB) microscope is outlined, complemented by 3D reconstruction of backscattered electron (BSE) images. Subsequently, cavity and precipitate segmentation was performed with the use of the image recognition software, DragonFly and the results were combined with the 3D reconstruction of the material microstructure, elucidating the decoration of grain boundaries with precipitation, as well as the high correlation of precipitates and grain boundaries with the initiation of creep cavitation. Comparison between the 2D and 3D results is discussed.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 316-327, February 25–28, 2025,
Abstract
View Papertitled, Creep Crack Growth on High and Low Creep Ductility Grade 91 Steel
View
PDF
for content titled, Creep Crack Growth on High and Low Creep Ductility Grade 91 Steel
This research compares creep crack growth behavior of two heats of creep strength enhanced ferritic (CSEF) steel, grade 91. These heats represent extremes of creep damage susceptibility, one heat exhibiting low creep ductility and the other high creep ductility. Creep crack growth tests were performed with compact tension specimens and were monitored with direct current potential drop and optical surface measurements. Load line displacement was measured throughout the duration of the tests. Specimens were sectioned, mounted, and analyzed using optical and scanning electron microscopy to assess the presence of oxidation, micro-cracking, creep damage, and void density. Tests were performed over a range of initial stress intensities on the low ductility material to investigate the impact of creep ductility. Metallurgical evidence and test data for each crack growth test was assessed to evaluate crack growth behavior linked to creep crack growth parameter (C*) and stress/creep damage distribution in the vicinity of the crack.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 449-460, February 25–28, 2025,
Abstract
View Papertitled, Investigating the Microstructural Evolution of Inconel 718 under a Controlled Thermal Gradient
View
PDF
for content titled, Investigating the Microstructural Evolution of Inconel 718 under a Controlled Thermal Gradient
This study demonstrates the Electro-Thermal Mechanical Testing (ETMT) system's capability to analyze the thermo-mechanical behavior of Inconel 718 (IN718) at a heating rate of 5 °C/s, achieving temperatures up to 950 °C. The temperature profile peaks at the sample's center and is approximately 25 °C at the extremes. Upon reaching 950 °C, the sample was aged for 30 hours before being rapidly quenched. This process froze the microstructure, preserving the phase transformations that occurred at various temperatures across the temperature parabolic gradient, which resulted in a complex gradient microstructure, providing a comprehensive map of phase transformations in IN718. The integration of thermal measurement, COMSOL modeling, scanning electron microscopy enabled a thorough characterization of the microstructural evolution in IN718, linking observed phases to the specific temperatures which provided a rapid screening of the effect of using different heating treatment routes.
Proceedings Papers
Microstructural Analysis of MoSiBTiC Alloys Based on Scanning Electron Microscopy Image Segmentation
Free
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 507-516, February 25–28, 2025,
Abstract
View Papertitled, Microstructural Analysis of MoSiBTiC Alloys Based on Scanning Electron Microscopy Image Segmentation
View
PDF
for content titled, Microstructural Analysis of MoSiBTiC Alloys Based on Scanning Electron Microscopy Image Segmentation
The microstructure of MoSiBTiC alloys is very complex, with three to four constituent phases and characteristic structures such as fine precipitates and lamellar structures. To perform the microstructural analysis efficiently, image segmentation was first performed for each phase of the microstructural images. Utilizing the Trainable Weka Segmentation method based on machine learning, the required segmentation time was dramatically reduced. Furthermore, by pre-adjusting the contrast of the images, the segmentation could be performed accurately for gray phases with different shades of gray. In addition, the U-Net method, based on deep learning, could perform highly accurate segmentation of characteristic microstructures consisting of multiple phases. The correlations between microstructural features and hardness were investigated using the segmented images in this study. The findings revealed that the volume fraction of each phase and the number of TiC clusters within the field of view significantly influenced hardness. This suggests that the hardness of MoSiBTiC alloys may be controlled by controlling the amount of TiC precipitates.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 582-591, February 25–28, 2025,
Abstract
View Papertitled, Study on Creep Rupture Properties of Inconel 617B and 10%Cr Steel Dissimilar Metal Weld
View
PDF
for content titled, Study on Creep Rupture Properties of Inconel 617B and 10%Cr Steel Dissimilar Metal Weld
In this paper, the dissimilar metal welds (DMWs) between 617B nickel-based alloy and 10%Cr martensitic heat-resistant steel filled by 617 filler metal was studied, focused on the high temperature creep rupture properties. The high temperature creep rupture properties of welded joints with different welding processes were tested, and the microstructure of welded joints before and after the creep rupture test was observed by OM and SEM. The results showed that, there were three failure modes: base metal failure, type W failure and interface failure, among which interface failure caused the most serious life reduction. The welded joints using ER NiCr-3 filler metal reduced the strain concentration at the interface, so the fracture location shifted from the interface to HAZ of 10%Cr martensitic heat-resistant steel under high temperature and low stress conditions, and creep rupture life was improved. Similarly, weld cap shifted the creep crack propagation path by changing the groove form, so as to altered the stress state of joint and prolong the creep rupture life.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 712-722, February 25–28, 2025,
Abstract
View Papertitled, Damage Mechanisms - Failure Analysis of Cracked 304 Stainless Steel Conduit of PWR Incore Instrumentation System
View
PDF
for content titled, Damage Mechanisms - Failure Analysis of Cracked 304 Stainless Steel Conduit of PWR Incore Instrumentation System
The incore instrumentation system of a pressurized water reactor (PWR) facilitates neutron flux mapping and temperature measurements at specific core locations. A guide conduit, extending from the seal table to the lower reactor pressure vessel head, guides and protects each incore guide thimble between the table and the lower reactor vessel head. Each flux thimble houses a detector and drive cable. Once filled with reactor coolant, the conduit becomes an extension of the reactor coolant pressure boundary. This paper reports the examination results of cracking detected in a TP304 stainless steel guide conduit adjacent to a fillet weld at the upper surface of a TP304 seal table. The cracking resulted in reactor coolant leakage that was detected by the presence of boric acid deposits on the exterior of the conduit and table. Failure analysis including dimensional measurements, chemical analysis, stereomicroscopy, metallography, and scanning electron microscopy showed that extensive cracking of the conduit and seal table material occurred due to stress corrosion cracking (SCC). Assessment showed that chlorine-containing deposits were present on the exterior of the conduit and on the surfaces of the seal table and were due to the design and operation of HVAC systems at the coastal plant. Stainless steels are susceptible to SCC in environments with elevated temperatures, chloride contents, and increased tensile stress – particularly in non-post weld heat treated (PWHT) weld regions and the heat affected zone (HAZ). This was the apparent primary cause of the failure. However, chloride-induced SCC of such materials typically results in transgranular crack propagation, whereas the observed cracks were indicative of intergranular stress corrosion cracking (IGSCC). Microstructural analysis showed that the observed cracks initiated in sensitized areas of material adjacent to the weld. Sensitization of the material caused chromium depletion from adjacent areas and increased susceptibility of the depleted areas to IGSCC. In this case, the most probable source of sensitization was related to welding and the long-term growth of grain boundary carbides nucleated during welding. This was considered a contributing cause to the failure.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 156-161, October 21–24, 2019,
Abstract
View Papertitled, Microstructure Evolution in a High Boron Ferritic Steel during Creep at 650°C
View
PDF
for content titled, Microstructure Evolution in a High Boron Ferritic Steel during Creep at 650°C
Microstructure change during creep at 650°C has been examined for a high-B 9%Cr steel by FIB-SEM serial sectioning 3D observation, Nano-SIMS, SEM, EBSD and TEM. The precipitates formed in the steel were M 23 C 6 , Laves phase, and a quite small amount of MX. For as-tempered steel, precipitation of M 23 C 6 on the prior austenite grain boundaries was clearly found, while precipitation of the Laves phase was not confirmed during tempering. The volume fraction of the Laves phase gradually increased with elapsed time, while M 23 C 6 appeared to increase once and decrease afterward, based on the comparison between the 2,754 h ruptured sample and the 15,426 h ruptured sample. Nano-SIMS measurements have revealed that B segregates on the prior austenite grain boundaries during normalizing, and it dissolves into M 23 C 6 .
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 205-216, October 21–24, 2019,
Abstract
View Papertitled, Super VM12—A New 12% Cr Boiler Steel
View
PDF
for content titled, Super VM12—A New 12% Cr Boiler Steel
The newly developed 12%Cr steel Super VM12 is characterized by excellent creep rupture strength properties (better than Grade 92) and enhanced steam oxidation resistance of 12%Cr steels such as VM12-SHC. Balanced properties profile of the new steel development in comparison to the existing well-established steels such as Grade 91 and Grade 92, opens opportunities for its application as construction material for components in existing or future high-efficiency power plants. In this study the oxidation behavior of typical 9%Cr steels was compared with the new steel development. The oxide scale morphologies and compositions of different oxide layers as function of temperature and exposure time in steam-containing atmospheres were characterized using light optical metallography, Scanning Electron Microscopy (SEM). Creep testing has been carried out in the temperature range between 525°C and 700°C. Selected creep specimens were investigated using the Transmission Electron Microscopy and the Atom Probe Tomography techniques.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 235-245, October 21–24, 2019,
Abstract
View Papertitled, Metallurgical Risk Factors in Grade 91 Steel
View
PDF
for content titled, Metallurgical Risk Factors in Grade 91 Steel
Modified 9Cr-1Mo steel (ASTM Gr.91) is widely used in components of fossil fueled power plants around the world today. This grade of steel has however been shown to exhibit significant variations in creep life and creep ductility, which has led to premature in-service failures. The aim of this work is to define potential metallurgical risk factors that lead to this variation in performance. To achieve this, a set of creep test samples that represent a wide range in this variation of creep behavior in this steel grade have been studied in detail. As a first stage in this characterization the macro-scale chemical homogeneity of the materials were mapped using micro-XRF. Understanding the segregation behavior also allows quantification of microstructural parameters in both segregated and non-segregated areas enabling the variations to be determined. For example this showed a significant increase in the number per unit area of Laves phase particles in high compared with low Mo content areas. To study the effect of MX particles on segregation a methodology combining SEM and TEM was employed. This involved chemically mapping the larger V containing particles using EDS in the SEM in segregated and unsegregated areas and then comparing the results to site-specific TEM analysis. This analysis showed that although the average size of the V containing samples is in the expected 0-50 nm size range, these particles in some samples had a wide size distribution range, which significantly overlaps with the M 23 C 6 size distribution range. This together with the segregation characteristics has important implications for determining meaningful quantitative microstructural data from these microstructurally complex materials.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 265-272, October 21–24, 2019,
Abstract
View Papertitled, Microstructural Evolution and Mechanical Properties of T122 Steel Tube in a 1000MW Ultra Supercritical Unit after Long-Term Service
View
PDF
for content titled, Microstructural Evolution and Mechanical Properties of T122 Steel Tube in a 1000MW Ultra Supercritical Unit after Long-Term Service
The microstructures and mechanical properties of T122 steel used for superheater tube of the boiler in a 1000 MW ultra supercritical power plant after service for 83,000h at 590℃ were investigated, and compared with data of that served for 56,000h in previous studies. The results show that compared with T122 tube sample service for 56,000h, the tensile properties at room temperature and the size of precipitated phase exhibit few differences, but the lath martensites features are apparent, and the Brinell hardness value are obviously higher. SEM and TEM experiments show that the substructure is still dominated by lath martensite. A few lath martensites recover, subgrains appear and equiaxe, and the dislocation density in grains is relatively low. A large number of second-phase particles precipitated at boundaries of original austenite grains and lath martensite phases, which are mainly M 23 C 6 and Laves phases.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 416-425, October 21–24, 2019,
Abstract
View Papertitled, Creep Rupture Properties of Dissimilar Welded Joint between Inconel 617B and COST E Martensitic Steel
View
PDF
for content titled, Creep Rupture Properties of Dissimilar Welded Joint between Inconel 617B and COST E Martensitic Steel
In this study, creep rupture behaviors and rupture mechanisms of dissimilar welded joint between Inconel 617B and COST E martensitic steel were investigated. Creep tests were conducted at 600 ℃ in the stress range 140-240 MPa. Scanning electron microscopy (SEM) and micro-hardness were used to examine the creep rupture behaviors and microstructure characteristics of the joint. The results indicated that the rupture positions of crept joints shifted as stress changed. At higher stress level, the rupture position was located in the base metal (BM) of COST E martensitic steel with much plastic deformation and necking. At relatively lower stress level, the rupture positions were located in the fine-grained heat affected zone (FGHAZ) of COST E or at the interface between COST E and WM both identified to be brittle fracture. Rupture in the FGHAZ was caused by type Ⅳ crack due to matrix softening and lack of sufficient precipitates pinning at the grain boundaries (GBs). Rupture at the interface was related to oxide notch forming at the interface.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 592-602, October 21–24, 2019,
Abstract
View Papertitled, Creep Damage Assessment of 47Ni-23Cr-23Fe-7W Alloy
View
PDF
for content titled, Creep Damage Assessment of 47Ni-23Cr-23Fe-7W Alloy
In order to establish a creep damage assessment method for 47Ni-23Cr-23Fe-7W (HR6W), which is a candidate material of A-USC, microstructure observation of creep interrupted specimens and ruptured specimen was conducted, and the creep damage process was examined. Creep tests were conducted under conditions of 800°C, 70 MPa, 700°C, and 100 MPa. For creep damage assessment, an optical microscope was used for replicas sampled from the outer surface of specimens, and crack ratio at grain boundaries was assessed. The results indicated that creep voids and cracks were initiated at grain boundaries from about 0.35 of creep life ratio, and crack ratio increased drastically after creep life ratio of 0.65. This crack ratio was almost the same regardless of the specimen shape Therefore, the method to assess crack ratio using replicas is considered to be an effective method for creep damage assessment of HR6W. An increase in the crack ratio due to an increase in creep life ratio showed the same trend as the change in elongation of creep interrupted specimens. Microstructure observations were conducted with interrupted specimens using SEM-ECCI (Electron Channeling Contrast Imaging) in order to clarify the cause of acceleration creep. The results showed that sub-boundary developed significantly near grain boundaries, which indicates that sub-boundary development may cause acceleration.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 880-891, October 21–24, 2019,
Abstract
View Papertitled, Design of High-Temperature Superalloys for Additive Manufacturing
View
PDF
for content titled, Design of High-Temperature Superalloys for Additive Manufacturing
The Alloys-by-Design approach, involving large-scale CALPHAD calculations to search a compositional range, has been used to isolate a suitable nickel-based superalloy for additive manufacturing (AM) by optimizing the trade-off between processability and increasing strength. This has been done in response to the limited focus on development of new superalloys designed to overcome the limitations of the AM process, specifically the high defect density of parts made from high-performance alloys. Selected compositions have been made using gas atomization, and laser powder-bed fusion AM trials were performed. The resulting properties were evaluated in the as-processed, heat treated and thermally exposed conditions. The assessment, combined with characterization techniques including scanning electron microscopy and atom probe tomography, rationalizes a temperature capability up to and above 850 °C, and demonstrate the opportunity to develop alloys with properties beyond the current state of the art.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 1060-1068, October 21–24, 2019,
Abstract
View Papertitled, Weld Solidification Behavior and Performance of Nickel-Base Superalloy GH750 for Use in 700 °C Advanced Ultra-Supercritical Boiler
View
PDF
for content titled, Weld Solidification Behavior and Performance of Nickel-Base Superalloy GH750 for Use in 700 °C Advanced Ultra-Supercritical Boiler
A new nickel-base superalloy GH750 has been developed as boiler tube of advanced ultrasupercritical (A-USC) power plants at temperatures about and above 750°C in China. This paper researched the weld solidification of GH750 filler metal, microstructure development and property of GH750 welded joint by gas tungsten arc weld. Liquid fraction and liquid composition variation under non-equilibrium state were calculated by thermo-dynamic calculation. The weld microstructure and the composition in the dendrite core and interdendritic region were analyzed by SEM(EDX) in detail. The investigated results show that there is an obvious segregation of precipitation-strengthening elements during the weld solidification. Titanium and Niobium are the major segregation elements and segregates in the interdendritic region. It was found that the changing tendency of the elements’ segregation distribution during the solidification of GH750 deposit metal is agree with the thermodynamic calculation results. Till to 3,000hrs’ long exposure at 750°C and 800°C, in comparison with the region of dendrite core of solidification microstructure, not only the coarsening and the accumulation of γʹ particles are remarkable in the interdendritic region, but also the small quantity of the blocky and needle like η phases from. The preliminary experimental results indicate that the weakening effect of creep-rupture property of the welded joint is not serious compared with GH750 itself.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 1079-1089, October 21–24, 2019,
Abstract
View Papertitled, The Improvement of Repair Welding for CrMoV Turbine Casings
View
PDF
for content titled, The Improvement of Repair Welding for CrMoV Turbine Casings
CrMoV cast steels are widely utilized for steam turbine and valve casings, and are subjected to operating and loading conditions which can promote damage mechanisms such as thermal fatigue, creep, erosion, etc. These components are subjected to variable, and sometimes severe conditions because of flexible operation. Therefore, there is a growing need for weld repair techniques including those which do not mandate post weld heat treatment (PWHT), e.g. so-called ‘temper bead’ weld repair. In this study, a simulated weld repair was performed using a temper bead technique. The maximum hardness in the heat affected zone (HAZ) CrMoV steel was ≤400HV. The integrity of the repair methodology was investigated using destructive testing, including hardness mapping, Charpy impact tests, tensile tests, low cycle fatigue and cross-weld creep, and the microstructure was assessed using light optical microscopy and scanning electron microscopy (SEM).
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 1224-1236, October 21–24, 2019,
Abstract
View Papertitled, Effect of Thermal Aging Treatment on Microstructure Evolution and Mechanical Properties Development in a Ni-Cr-Mo-V Weld Metal
View
PDF
for content titled, Effect of Thermal Aging Treatment on Microstructure Evolution and Mechanical Properties Development in a Ni-Cr-Mo-V Weld Metal
In this study, 25Cr2Ni2Mo1V filler metal was deposited to weld low pressure steam turbine shafts, which are operated in fossil power plants. A comparison experiment was conducted on the weld metals (WMs) before and after varied various aging duration from 200 hours up to 5000 hours at 350 ℃. Microstructure was characterized by means of scanning electron microscopy (SEM) and electron back-scattered diffraction (EBSD) techniques. In addition, mechanical properties of corresponding specimens were evaluated, e.g. Vickers microhardness, Charpy V impact toughness and tensile strength. It is shown that the tensile strength remained stable while impact energy value decreased with increasing aging duration. Based on the experiment above, it was concluded that the variation of mechanical properties can be attributed to the redissolution of carbides and reduction of bainite lath substructure.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 1380-1388, October 21–24, 2019,
Abstract
View Papertitled, Deformation Behavior of Advanced γ-TiAl Based Alloys by In-Situ SEM Observation and Digital Image Correlation Technique
View
PDF
for content titled, Deformation Behavior of Advanced γ-TiAl Based Alloys by In-Situ SEM Observation and Digital Image Correlation Technique
Tensile deformation behavior of γ-TiAl based alloys consisting of α 2 -Ti 3 Al/γ lamellar colonies, β-Ti grains, and γ grains were investigated by in-situ scanning electron microscopy and digital image correlation technique, in order to identify the role of each microstructure constituents in deformation. The alloy with nearly lamellar microstructure, in which the volume fraction of β/γ duplex ( V DP ) is 10%, shows elongation of only 0.14%, whereas the alloy with nearly globular β/γ duplex microstructure with V DP of 94% shows elongation of 0.49%. In α 2 /γ lamellar microstructure, obvious strain localization occurs along lamellae and develops at specific regions with loading. In the case of β/γ duplex microstructure, strain localization is observed in γ grains and in β phase regions near the β/γ phase boundary, although no obvious deformation is observed in the β grains. β/γ phase boundaries enhances room temperature ductility of TiAl alloys by inducing multiple slip in γ phase and deformation of β phase.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 22-34, October 21–24, 2019,
Abstract
View Papertitled, Assessment and Quantification of Damage in the Grade 91 Steel Partially Transformed Zone
View
PDF
for content titled, Assessment and Quantification of Damage in the Grade 91 Steel Partially Transformed Zone
Damage in the grade 91 steel partially transformed zone of weld heat affected zones has historically been associated with many different types of microstructural features. Features described as being responsible for the nucleation of creep damage include particles such as laves phase, coarse M 23 C 6 , inclusions, nitrides, or interactions between creep strong and creep week grains, grain boundaries and potentially other sources. Few studies have attempted to link the observations of damage on scales of increasing detail from macro, to micro, to nano. Similarly, assessments are not made on a statistically relevant basis using 2D or 3D microscopy techniques. In the present paper, 2D assessment using scanning electron microscopy (SEM) and quantification techniques such as energy dispersive X-ray spectroscopy (EDS) and electron backscatter diffraction (EBSD) are utilized in combination with 3D serial sectioning of large volumes using plasma focused ion beam milling (P-FIB) and simultaneous EDS to evaluate an interrupted cross-weld creep test. Moreover, the sample selected for examination was from a feature cross-weld creep test made using a parent material susceptible to the evolution of creep damage. The test conditions were selected to give creep brittle behaviour and the sample was from a test interrupted at an estimated life fraction of 60%. The findings from these evaluations provide perspective on the features in the microstructure responsible for the nucleation and subsequent growth of the observed damage.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 202-212, October 11–14, 2016,
Abstract
View Papertitled, Design, Creep Performance and Deformation Behavior of an Eta-Phase Strengthened Nickel-Base Alloy for A-USC Power Plant Applications
View
PDF
for content titled, Design, Creep Performance and Deformation Behavior of an Eta-Phase Strengthened Nickel-Base Alloy for A-USC Power Plant Applications
By utilizing computational thermodynamics in a Design of Experiments approach, it was possible to design and manufacture nickel-base superalloys that are strengthened by the eta phase (Ni3Ti), and that contain no gamma prime (Ni3Al,Ti). The compositions are similar to NIMONIC 263, and should be cost-effective, and have more stable microstructures. By varying the aging temperature, the precipitates took on either cellular or Widmanstätten morphologies. The Widmanstätten-based microstructure is thermally stable at high temperatures, and was found to have superior ductility, so development efforts were focused on that microstructure. High temperature tensile test and creep test results indicated that the performance of the new alloys was competitive with NIMONIC 263. SEM and TEM microscopy were utilized to determine the deformation mechanisms during creep.
1