Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-9 of 9
Solution heat treatment
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 13-22, October 15–18, 2024,
Abstract
View Paper
PDF
For the safe operation of high temperature equipment, it is necessary to ensure creep rupture ductility of the components from the viewpoint of notch weakening. In this study, the effect of heat treatment conditions on creep rupture ductility was evaluated and its underlying metallurgical mechanism was investigated with using a forged Ni-based superalloy Udimet520. In order to improve the creep rupture ductility without lowering the creep rupture strength, it is important to increase both intragranular strength and intergranular strength in a balanced manner. For this purpose, it was clarified that 1) secondary γ' phase within grains should be kept fine and dense, 2) grain boundaries should be sufficiently covered by M 23 C 6 carbide by increasing its phase fraction, and 3) tertiary γ' phase within grains should be redissolved before the start of creep. To obtain such a precipitate state, it is essential to appropriately select the cooling rate after solution treatment, stabilizing treatment and aging treatment conditions.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 814-820, October 15–18, 2024,
Abstract
View Paper
PDF
To maximize the mechanical properties of Ni-base superalloys, solution heat treatment is essential to sufficiently homogenize the dendritic segregations formed during solidification. To investigate the homogenization behavior during solution heat treatment, a Ni-base single crystal superalloy, TMS-238, was heat treated under various conditions; temperatures ranging from 1573 to 1613 K for times ranging from 2 to 100 h. After solution heat treatment, the average concentrations of Re, an element that exhibits the highest degree of segregation, in dendrite core and inter-dendritic regions were analyzed. From these results, apparent diffusion constants, D app , were determined based on a proposed homogenization model. Obtained D app values were significantly smaller than the diffusion constant of Re in Ni, strongly suggesting that the apparent diffusion coefficients should be obtained experimentally when using the target alloy.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 174-184, October 21–24, 2019,
Abstract
View Paper
PDF
The creep strength and ductility of Grade P22 steel (2¼ Cr) was measured at 600°C under standard uniaxial tensile conditions at 150MPa. Test specimens were prepared by solution heat treatment at austenitization temperatures ranging from 900°C - 1200°C followed by normalization at 900°C before continuous air cooling to room temperature. In addition to specimens tested in the solution treated state, creep tests were also performed after tempering. The variable austenitization temperatures gave rise to different prior austenite grain (PAG) sizes, which in turn influenced the crystallographic packet and block boundary misorientation angle distribution. The latter parameters were measured using electron backscattered diffraction which also allowed partial reconstruction of the PAG boundaries. The time to creep failure at 600°C increased as function of PAG size up to approximately 70µm, but significantly decreased when the average prior austenite grain size measured approximately 108 µm. However, the minimum creep rate decreased even up to the largest PAG size with corresponding decrease in creep ductility. The stability of the crystallographic packet and block boundaries influences the high strength-low ductility for the large PAGs in comparison to the dominant effect of PAG boundaries at the smallest grain size where extensive recovery and recrystallization reduces creep strength.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 869-879, October 21–24, 2019,
Abstract
View Paper
PDF
In order to establish a induction bending technique for Ni-based alloy HR6W large pipe, induction bending test was conducted on HR6W, which is a piping candidate material of 700°C class Advanced Ultra-Super Critical. In this study, a tensile bending test in which tensile strain was applied and a compression bending test in which compression strain was applied to the extrados side of the pipe bending part. As the results of these two types of induction bending tests, it was confirmed that a predetermined design shape could be satisfied in both bending tests. In addition, the wall thickness of the pipe was equal to or greater than that of the straight pipe section in compression bending. Therefore, if compression bending is used, it is considered unnecessary to consider the thinning amount of the bent portion in the design. Next, penetrant test(PT) on the outer surface of the bending pipes were also confirmed to be acceptable. Subsequently, metallographic samples were taken from the outer surface of the extrados side, neutral side and intrados side of the pipe bending portion. Metallographic observation confirmed that the microstructures were normal at all the three selected positions. After induction bending, the pipe was subjected to solution treatment. Thereafter, tensile tests and creep rupture tests were carried out on samples that were cut from the extrados side, neutral side and intrados side of the pipe bending portion. Tensile strength satisfied the minimum tensile strength indicated in the regulatory study for advanced thermal power plants report of Japan. Each creep rupture strength was the almost same regardless of the solution treatment conditions. From the above, it was possible to establish a induction bending technique for HR 6W large piping.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 914-923, October 21–24, 2019,
Abstract
View Paper
PDF
Titanium alloys are expected to be used as heat-resisting structural materials in the airplane and automotive industries. In this study, the creep properties of near-α Ti alloys consisting of a lamellar microstructure were studied. Ti–8.5wt%Al–8.0wt%Zr–2wt%Mo–1wt%Nb–0.15wt%Si alloy (alloy code, TKT34) and an alloy with 0.1 wt% of added boron (alloy code, TKT35) were used in this study. An ingot was hot forged at a temperature of 1,403 K and hot rolled (caliberrolling) at a temperature of 1,273 K to a reduction rate of approximately 90%. It then underwent solution treatment in a β single-phase region followed by air cooling. Finally, it was subjected to aging treatment for 28.3 ks at a temperature of 863 K and then air-cooled. Two solution treatment conditions were applied: a time of 1.8 ks at a temperature of 1,323 K (high temperature/short time (HS)) and a time of 3.6 ks at a temperature of 1,223 K (low temperature/long time (LL)). The average grain size of the prior β grains showed a tendency of the solution treatment temperature being low and the boron-added alloys tending to be small. The length and thickness of the lamellar of these alloys shortened or thinned owing to the addition of boron and at a low solution treatment temperature. The creep tests were carried out at an applied stress of 137 MPa and a temperature of 923 K in air. The creep rupture life of these alloys was excellent, in order of TKT35 (LL) < TKT34 (LL) < TKT35 (HS) ≦ TKT34 (HS). Therefore, the creep rupture life of these alloys was shown to be superior under the HS solution treatment condition as compared to the LL solution treatment condition. However, the minimum or steady-state strain rate of these alloys became slower in order of TKT 35 (LL)> TKT34 (LL)> TKT34 (HS) ≧ TKT35 (HS). The creep properties depended on the microstructure of the alloys.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 1407-1416, October 22–25, 2013,
Abstract
View Paper
PDF
Low thermal expansion precipitation strengthening Ni-base superalloy, Ni-20Cr-10Mo-1.2Al-1.6Ti alloy (USC141TM), was developed for 700°C class A-USC steam turbine material by Hitachi, Ltd and Hitachi Metals, Ltd. USC141 is usually solution treated and then aged to increase high temperature strength for turbine blades and bolts. As the estimated 105h creep rupture strength at 700°C is about 180MPa, USC141 could also be expected to apply for boiler tubes. On the other hand, this alloy seems to be only solution treated to apply for boiler tubes because tubes are usually jointed by welding and bended by cold working and thus tube alloys should have low hardness before welding and bending and should be used as solution treated. In this study, the creep properties of USC141 as solution treated was evaluated, and the results and microstructures after creep tests were compared with those as aged. As a result, USC141 as solution treated exhibited almost as same creep rupture properties as that as aged because precipitation at grain boundaries and in grains gradually increased at testing temperatures around 700°C. Furthermore seamless tubes of USC141 were produced and various properties including creep properties are now being evaluated.
Proceedings Papers
AM-EPRI2010, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Sixth International Conference, 361-372, August 31–September 3, 2010,
Abstract
View Paper
PDF
The effect of grain size after solution treatment on the mechanical properties of FENIX-700, including its cooling rate, was investigated. In addition, the dependance of precipitation observed at grain boundaries on the heat treatment conditions was also discussed on the basis of the results of microstructure observations. It was confirmed that the tensile ductility, the creep rupture ductility, and the absorbed energy decreased as the grain size increased. The creep rupture strength, in contrast, increased remarkably as the grain size increased. The tensile strength increased as the cooling rate increased. Experimental results showed that satisfactory mechanical properties would be obtained for a grain size of ASTM G.S.No. 1.0-3.0.
Proceedings Papers
AM-EPRI2010, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Sixth International Conference, 933-948, August 31–September 3, 2010,
Abstract
View Paper
PDF
Cold working and bending during boiler manufacturing can induce strain hardening in austenitic stainless steel, potentially compromising creep ductility and leading to premature failures during operation. While design codes like ASME I, PG 19 provide guidelines for maximum strain levels before solution treating is required, industry concerns suggest these limits may be too high, prompting some boiler manufacturers to implement more conservative thresholds. This study examined the creep ductility of four austenitic stainless steels (TP310HCbN, XA704, TX304HB, and Sanicro 25) at prior strain levels of 12% and 15%, with Sanicro 25 demonstrating the highest ductility, followed by TX304HB, XA704, and TP310HCbN. Solution annealing successfully restored creep ductility to exceed 10% elongation in all materials, though this treatment may be necessary at strains of 12% and 15% for all materials except Sanicro 25 to ensure adequate creep ductility. The findings suggest that ASME I PG 19 guidelines for austenitic stainless steels containing Cb, V, and N should be reviewed, as lower strain limits could help reduce strain-induced precipitation hardening failures.
Proceedings Papers
AM-EPRI2004, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fourth International Conference, 1136-1145, October 25–28, 2004,
Abstract
View Paper
PDF
Effects of Ni content and heat treatment condition on impact toughness and creep strength of precipitation strengthened 15Cr ferritic steels were investigated in order to discuss a possibility of improvement in both mechanical properties. Both creep strength and impact toughness of the developing steels were improved drastically by solid solution treatment with water quenching. However, an addition of Ni reduced the long-term creep strength of the steels, though Ni was effective in improvement in impact toughness. It was found that water quenching suppressed formation of coarse block type particles and precipitate free zones around them, and precipitation of plate type fine particles and thermal stability of them within ferrite phase were promoted by solid solution treatment with water quenching. However, martensite phase with sparsely distributed coarse block type particles were formed in the Ni added steels, and such microstructure reduced the precipitation strengthening effect slightly. On the other hand, increase in impact values of the steel indicated no relation to volume fraction of martensite phase. It was supposed that the impact toughness of ferrite phase itself was improved by solid solution treatment and addition of Ni.