Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-4 of 4
Solution annealing
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 994-1007, February 25–28, 2025,
Abstract
View Papertitled, Influence of Solution Annealing on Creep Behavior of Additively Manufactured 316H SS Using Microstructurally Graded Specimen
View
PDF
for content titled, Influence of Solution Annealing on Creep Behavior of Additively Manufactured 316H SS Using Microstructurally Graded Specimen
Laser additive manufacturing (AM) is being considered by the nuclear industry to manufacture net- shape components for advanced reactors and micro reactors. Part-to-part and vendor-to-vendor variations in part quality, microstructure, and mechanical properties are common for additively manufactured components, attributing to the different processing conditions. This work demonstrates the use of microstructurally graded specimen as a high throughput means to establish the relationship between process-microstructure-creep properties. Through graded specimen manufacturing, multiple microstructures, correlated to the processing conditions, can be produced in a single specimen. The effects of a solution annealing heat treatment on the microstructure and creep properties of AM 316H are investigated in this work. Using digital image correlation (DIC), the creep strain can be calculated in these graded regions, allowing for multiple microstructures to be probed in a single creep test. The solution annealing heat treatment was not sufficient in recrystallization of the large, elongated grains in the AM material; however, it was sufficient in removing the cellular structure commonly found in AM processed alloys creating a network of subgrains in their place. The resulting changes in microstructure and mechanical properties are presented. The heat treatment was found to generally increase the minimum creep rate, reduce the minimum creep rate, and reduce the ductility. Significant amounts of grain boundary carbides and cavitation were observed.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 1020-1032, February 25–28, 2025,
Abstract
View Papertitled, Assessment of 316H Stainless Steel Produced by Directed Energy Deposition Additive Manufacturing for High Temperature Power Plant Applications
View
PDF
for content titled, Assessment of 316H Stainless Steel Produced by Directed Energy Deposition Additive Manufacturing for High Temperature Power Plant Applications
This study evaluates the elevated temperature mechanical performance of 316H stainless steel produced using directed energy deposition (DED) additive manufacturing (AM) from three separate collaborative research programs focused on understanding how AM variables affect creep performance. By combining these studies, a critical assessment of variables was possible including the DED AM method (laser powder and gas metal arc wire), laser power, sample orientation relative to build orientation, chemical composition, and post-processing heat treatment. Detailed microstructure characterization was used to supplement creep and chemistry results to provide insights into potential mechanistic differences in behavior. The study found that sample orientation was a critical variable in determining lower-bound creep behavior, but that in general the lowest creep strength orientation and the lowest creep ductility orientation were not the same. Heat treatment was also an important variable with as-printed materials showing for specific test conditions improved performance and that underlying substructures formed due to inhomogeneous chemical distributions were not completely removed when using standard wrought solution annealing heat-treatments. The chemistry of the final deposited parts differed from the starting stock and may be an important consideration for long-term performance which is not fully appreciated. Overall, the study found that while all the DED materials tested fell within an expected wrought scatter band of performance, the actual creep performance could vary by an order of magnitude due to the many factors described.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 1054-1065, February 25–28, 2025,
Abstract
View Papertitled, Evaluation of Directed Energy Deposition 316LSi Stainless Steel Pressure Boundary Parts
View
PDF
for content titled, Evaluation of Directed Energy Deposition 316LSi Stainless Steel Pressure Boundary Parts
Additive manufacturing is being considered for pressure boundary applications for power plant service by ASME Boiler and Pressure Vessel Code and regulators. Both existing and new plants could benefit from the reduced lead times, design flexibility, and part consolidation possible with additive manufacturing. Various ASME code committees are working towards rules and guidance for use of additive manufacturing. To further the industry's understanding, this research program was undertaken to evaluate the properties of wire arc additive manufactured 316L stainless steel. This study included microstructural characterization, chemical composition testing, mechanical testing, and nondestructive evaluation of multiple large (1600-pound (700 kg)) 316LSi stainless steel valve bodies produced using the gas metal arc directed energy deposition process followed by solution annealing. The results showed the tensile behavior over a range of temperatures was comparable to wrought material. No variation in tensile behavior was observed with change in tensile sample orientation relative to the build direction. Room temperature Charpy V-notch absorbed energy toughness was comparable to wrought material. Large grain sizes were observed in the metallographic samples, indicating that lowering the solution anneal temperature may be worthwhile. The results of surface and volumetric examination were acceptable when compared to forged material acceptance criteria. Together these results suggest that GMA-DED can produce acceptable materials properties comparable to forged materials requirements.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 558-569, October 21–24, 2019,
Abstract
View Papertitled, Microstructure and Mechanical Properties of Haynes 282 Fabricated by Electron Beam Melting
View
PDF
for content titled, Microstructure and Mechanical Properties of Haynes 282 Fabricated by Electron Beam Melting
The Haynes 282 Ni-based superalloy (57Ni-20Cr-10Co-8.5Mo-2.1Ti-1.5Al) is a very promising candidate for the fabrication by additive manufacturing of gas turbine components of complex geometries. Alloy 282 was fabricated by electron beam melting (EBM) and exposed to two different heat treatments, (a) solution anneal (SA) at 1135°C followed by the standard 2-step aging treatment (2h at 1010°C plus 8h at 788°C) and (b) SA followed by 4h 800°C. Large elongated grains were observed for the as-fabricated and annealed EBM 282 materials, with a γ′ (Ni 3 (Al,Ti)) average size of ~100 nm and 20 nm, respectively. The as-fabricated EBM 282 alloy exhibited good ductility at 20-900°C and tensile strength slightly lower than the tensile strength of wrought 282. Annealing the alloy resulted in a moderate increase of the alloy strength at 800 and 900°C but a decrease of the alloy ductility. The creep lifetime at 800°C, 200MPa of the as-fabricated and annealed EBM 282 specimens machined along the build direction was 2 times and 1.5 times superior to the expected lifetime for wrought 282, respectively. For creep specimens machined perpendicular to the build direction, the lifetimes were ~25% lower compared to the wrought alloy. These creep results are directly related to the strong grain texture of the EBM 282 alloy and the limited impact of the initial γ′ (Ni 3 (Al,Ti)) size on alloy 282 creep properties.