Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-20 of 160
Heat treatment
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 13-22, October 15–18, 2024,
Abstract
View Paper
PDF
For the safe operation of high temperature equipment, it is necessary to ensure creep rupture ductility of the components from the viewpoint of notch weakening. In this study, the effect of heat treatment conditions on creep rupture ductility was evaluated and its underlying metallurgical mechanism was investigated with using a forged Ni-based superalloy Udimet520. In order to improve the creep rupture ductility without lowering the creep rupture strength, it is important to increase both intragranular strength and intergranular strength in a balanced manner. For this purpose, it was clarified that 1) secondary γ' phase within grains should be kept fine and dense, 2) grain boundaries should be sufficiently covered by M 23 C 6 carbide by increasing its phase fraction, and 3) tertiary γ' phase within grains should be redissolved before the start of creep. To obtain such a precipitate state, it is essential to appropriately select the cooling rate after solution treatment, stabilizing treatment and aging treatment conditions.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 23-38, October 15–18, 2024,
Abstract
View Paper
PDF
This study examines the corrosion resistance of additively manufactured 316L stainless steel (SS) for nuclear applications across three environments: pressurized water reactor primary water (PWR PW), hot concentrated nitric acid, and seawater. Wire-feed laser additive manufacturing (WLAM) specimens showed oxidation behavior similar to wrought 316L SS in PWR PW, though stress corrosion cracking (SCC) susceptibility varied with heat treatment. In nitric acid testing, laser powder bed fusion (L-PBF) specimens demonstrated superior corrosion resistance compared to conventional SS, primarily due to improved intergranular corrosion resistance resulting from cleaner feedstock powder and rapid solidification rates that minimized grain boundary segregation. Laser metal deposition (LMD) repair studies in seawater environments successfully produced dense, crack-free repairs with good metallurgical bonding that matched the substrate’s mechanical properties while maintaining corrosion resistance. These results emphasize the importance of corrosion testing for additively manufactured components and understanding how their unique microstructures affect performance.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 39-49, October 15–18, 2024,
Abstract
View Paper
PDF
The American Society of Mechanical Engineers (ASME) Boiler and Pressure Vessel Codes (BPVC) and Code for Pressure Piping have been utilized extensively for the construction and maintenance of plants in the power generation industry. These codes consist of different relevant sections that are applicable to the various pressure retaining components and their service application. This paper presents a comparison of the welding requirements between the various ASME construction codes outside of the qualification requirements within Section IX. Topics of discussion include preheat temperature, interpass temperature, postweld heat treatment, toughness testing, filler material requirements, and use of standard welding procedure specifications. Individual paragraphs and subparagraphs specific to these topics are compared and contrasted to establish their similarities and differences.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 74-87, October 15–18, 2024,
Abstract
View Paper
PDF
The power industry has been faced with continued challenges around decarbonization and additive manufacturing (AM) has recently seen increased use over the last decade. The use of AM has led to significant design changes in components to improve the overall efficiency of gas turbines and more recently, hot-section components have been fabricated using AM nickel-base superalloys, which have shown substantial benefits. This paper will discuss and summarize extensive studies led by EPRI in a novel AM nickel-base superalloy (ABD·900-AM). A comprehensive high temperature creep testing study including >67,000 hours of creep data concluded that ABD-900AM shows improved properties compared to similar ~35% volume fraction gamma prime strengthened nickel-base superalloys fabricated using additive methods. Several different creep mechanisms were identified and various factors influencing high temperature behavior, such as grain size, orientation, processing method, heat treatment, carbide structure, chemistry and porosity were explored. Additional studies on the printability, recyclability of powder, wide range of process parameters and several other factors have also been studied and results are summarized. A summary on the alloy -by-design approach and accelerated material acceptance of ABD-900AM through extensive testing and characterization is further discussed. Numerous field studies and examples of field use cases in ABD-900AM are also evaluated to showcase industry adoption of ABD-900AM.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 159-170, October 15–18, 2024,
Abstract
View Paper
PDF
The Advanced Materials and Manufacturing Technologies (AMMT) program is aiming at the accelerated incorporation of new materials and manufacturing technologies into nuclear-related systems. Complex Ni-based components fabricated by laser powder bed fusion (LPBF) could enable operating temperatures at T > 700°C in aggressive environments such as molten salts or liquid metals. However, available mechanical properties data relevant to material qualification remains limited, in particular for Ni-based alloys routinely fabricated by LPBF such as IN718 (Ni- 19Cr-18Fe-5Nb-3Mo) and Haynes 282 (Ni-20Cr-10Co-8.5Mo-2.1Ti-1.5Al). Creep testing was conducted on LPBF 718 at 600°C and 650°C and on LPBF 282 at 750°C. finding that the creep strength of the two alloys was close to that of wrought counterparts. with lower ductility at rupture. Heat treatments were tailored to the LPBF-specific microstructure to achieve grain recrystallization and form strengthening γ' precipitates for LPBF 282 and γ' and γ" precipitates for LPBF 718. In-situ data generated during printing and ex-situ X-ray computed tomography (XCT) scans were used to correlate the creep properties of LPBF 282 to the material flaw distribution. In- situ data revealed that spatter particles are the potential causes for flaws formation in LPBF 282. with significant variation between rods based on their location on the build plate. XCT scans revealed the formation of a larger number of creep flaws after testing in the specimens with a higher initial flaw density. which led to a lower ductility for the specimen.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 259-269, October 15–18, 2024,
Abstract
View Paper
PDF
Gas turbine blades made from nickel-based superalloys, valued for their high temperature stability and creep resistance, undergo various forms of microstructural degradation during extended service at elevated temperatures that can ultimately lead to blade failure. To extend blade and turbine rotor life, Sulzer has developed evaluation and rejuvenation processes that include microstructural assessment and stress rupture testing of specimens from service-exposed blades. While stress rupture testing presents certain limitations and challenges in evaluating material condition, Sulzer has successfully rejuvenated hundreds of gas turbine blade sets across multiple superalloy types, including GTD 111, IN 738 LC, and U 500, demonstrating the effectiveness of heat treatment rejuvenation in improving microstructure and mechanical properties of service-degraded components.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 365-372, October 15–18, 2024,
Abstract
View Paper
PDF
Modified 9Cr-1Mo steel was manufactured via laser powder bed fusion (LPBF) using gas atomized powders under various building conditions. Dense samples were obtained at an energy density of 111-125 J/mm 3 . As-built samples were subjected to a normalization and tempering heat treatments. The microstructure of the as-built sample exhibits a duplex structure, comprising coarse columnar δ-ferrite grains and fine martensite grains. In addition, a small amount of retained austenite phase was observed at the interface between δ-ferrite and martensite. The formation of δ-ferrite is attributed to the extremely rapid solidification that occurs during the LPBF process, while martensite is obtained through the phase transformation because of the thermal cycles experienced during the process. The area fraction of δ-ferrite and martensite can be controlled by adjusting the LPBF parameters. Typical as-built microstructure morphology characterized by the columnar δ- ferrite was eliminated after the heat treatments, resulting in a tempered martensitic microstructure that is identical with that obtained through the conventional process. However, an increase in prior austenite grain size was observed when the area fraction of δ-ferrite in the as-built condition was high, due to faster phase transformation kinetics of martensite than that of δ-ferrite during the normalization. This suggests that the prior austenite grain size can be controlled by optimizing the area fraction of δ-ferrite and martensite in the as-built microstructure.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 409-417, October 15–18, 2024,
Abstract
View Paper
PDF
Main steam control valves are crucial components in power plants, as they are the final elements in the steam piping system before the steam enters the turbine. If any parts of these valves become damaged, they can severely harm the steam turbines. Recently, power plants have been required to operate under cyclical loading, which increases the risk of cracks in the control valve seats. This is due to the different rates of expansion between the Stellite surface and the underlying Grade 91 steel surface when exposed to high temperatures. To ensure a reliable power supply, power plants cannot afford long downtimes, making on-site service essential. This paper presents an on-site technique for post-weld heat treatment (PWHT) of Stellite seats. By using a heating pad arrangement and an induction heater, the required PWHT temperature of 740°C, as specified in the welding specification procedure (WPS), can be achieved. This method allows for on-site valve seat repair and can be applied to other power plants as well.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 473-482, October 15–18, 2024,
Abstract
View Paper
PDF
The next generation of materials and assemblies designed to address challenges in power generation, such as molten salt or supercritical carbon dioxide thermal transfer systems, corrosion, creep/fatigue, and higher temperature operation, will likely be highly optimized for their specific performance requirements. This optimization often involves strict control over microstructure, including homogeneity, grain size, texture, and grain boundary phases, as well as precise alloy chemistry and homogeneity. These stringent requirements aim to meet the new demands for bulk mechanical performance and durability. Some advanced materials, like oxide-dispersion strengthened or high-entropy alloys, necessitate specialized synthesis, fabrication, or welding/joining processes. Traditional methods that involve melting and solidifying can compromise the optimized microstructure of these materials, making non-melting synthesis and fabrication methods preferable to preserve their advanced characteristics. This paper presents examples where solid-phase, high-shear processing has produced materials and semi-finished products with superior performance compared to those made using conventional methods. While traditional processing often relies on thermodynamics-driven processes, such as creating precipitate phases through prolonged heat treatment, high-shear processing offers kinetics-driven, non-equilibrium alternatives that can yield high-performance microstructures. Additionally, examples are provided that demonstrate the potential for more cost-effective manufacturing routes due to fewer steps or lower energy requirements. This paper highlights advances in high-shear extrusion processing, including friction extrusion and shear-assisted processing and extrusion, as well as developments in solid-phase welding techniques like friction stir welding for next-generation power plant materials.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 552-560, October 15–18, 2024,
Abstract
View Paper
PDF
This study investigates the mechanisms of temper embrittlement in 410 martensitic stainless steel, a material widely used in steam turbine blades due to its excellent corrosion resistance and high strength achieved through quenching and tempering heat treatments. While the material’s hardness and impact toughness strongly depend on tempering temperatures, significant embrittlement occurs around 540°C, manifesting as decreased Charpy impact energy alongside increased strength and hardness. To understand this phenomenon at the nanometer scale, high-resolution transmission electron microscopy (TEM) analysis was performed, focusing on electron diffraction patterns along the <110>α-Fe and <113>α-Fe zone axes. The analysis revealed distinctive double electron diffraction spots at 1/3(211) and 2/3(211) positions, with lattice spacing of approximately 3.5 Å—triple the typical α-bcc lattice spacing (1.17 Å). These regions were identified as metastable “zones” resembling ω-phase structures, potentially responsible for the embrittlement. While this newly identified phase structure may not fully explain the complex mechanisms of temper embrittlement, it provides valuable insights for developing improved alloying and heat treatment methods to mitigate embrittlement in martensitic steels.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 592-599, October 15–18, 2024,
Abstract
View Paper
PDF
The aspiration to deploy Nb-based alloys as viable upgrade for Ni-based superalloys is rooted in their potential for superior performance in high-temperature applications, such as rocket nozzles and next-generation turbines. However, realizing this goal requires overcoming formidable design hurdles, including achieving high specific strength, creep resistance, fatigue, and oxidation resistance at elevated temperatures, while preserving ductility at lower temperatures. Additionally, the requisite for alloy bond-coatings, to ensure compatibility with coating materials, further complicates the design process. QuesTek Innovations has its Integrated Computational Materials Engineering (ICME) technologies to design a superior performance high-temperature Nb-based superalloy based on solid solution and precipitation strengthening. Additionally, utilizing a statistical learning method from very limited available data, QuesTek engineers were able to establish physics-based material property models, enabling accurate predictions of equilibrium phase fraction, DBTT, and creep properties for multicomponent Nb alloys. With the proven Materials by Design methodology under the ICME framework, QuesTek successfully designed a novel Nb superalloy that met the stringent design requirements using its advanced ICMD materials modeling and design platform.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 623-634, October 15–18, 2024,
Abstract
View Paper
PDF
MarBN steels, originally developed by Professor Fujio Abe at NIMS Japan, have undergone significant advancement in the UK through a series of government-funded collaborative projects (IMPACT, IMPEL, INMAP, IMPULSE, and IMPLANT). These initiatives have achieved several major milestones, including operational power plant trials, full-scale extruded pipe production, matching welding consumable development, and most notably, the creation of IBN-1—a new steel demonstrating 30-45% higher creep strength than Grade 92. However, like other creep strength-enhanced ferritic steels, IBN-1 shows reduced creep ductility under the lower stress conditions typical of operational use. Since adequate creep ductility is essential for component damage tolerance and effective in-service monitoring, this study investigates the effects of an alternative normalizing and tempering heat treatment on cast IBN-1. The research presents creep rupture test results showing improved ductility and analyzes the microstructural mechanisms responsible for this enhancement.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 735-749, October 15–18, 2024,
Abstract
View Paper
PDF
This study investigates a novel approach to addressing the persistent Type IV cracking issue in Grade 91 steel weldments, which has remained problematic despite decades of service history and various mitigation attempts through chemical composition and procedural modifications. Rather than further attempting to prevent heat-affected zone (HAZ) softening, we propose eliminating the vulnerable base metal entirely by replacing critical sections with additively manufactured (AM) weld metal deposits using ASME SFA “B91” consumables. The approach employs weld metal designed for stress-relieved conditions rather than traditional normalizing and tempering treatments. Our findings demonstrate that the reheat cycles during AM buildup do not produce the substantial softening characteristic of Type IV zones, thereby reducing the risk of premature creep failure. The study presents comprehensive properties of the AM-built weld metal after post-weld heat treatment (PWHT), examines factors influencing deposit quality and performance, and explores the practical benefits for procurement and field construction, supported by in-service data and application cases.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 766-783, October 15–18, 2024,
Abstract
View Paper
PDF
Ni-base superalloys used for hot section hardware of gas turbine systems experience thermomechanical fatigue (TMF), creep, and environmental degradation. The blades and vanes of industrial gas turbines (IGTs) are made from superalloys that are either directionally-solidified (DS) or cast as single crystals (SX). Consequently, designing and evaluating these alloys is complex since life depends on the crystallographic orientation in addition to the complexities related to the thermomechanical cycling and the extent of hold times at elevated temperature. Comparisons between the more complex TMF tests and simpler isothermal low cycle fatigue (LCF) tests with hold times as cyclic test methods for qualifying alternative repair, rejuvenation, and heat-treatment procedures are discussed. Using the extensive set of DS and SX data gathered from the open literature, a probabilistic physics-guided neural network is developed and trained to estimate life considering the influence of crystallographic orientation, temperature, and several other cycling and loading parameters.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 814-820, October 15–18, 2024,
Abstract
View Paper
PDF
To maximize the mechanical properties of Ni-base superalloys, solution heat treatment is essential to sufficiently homogenize the dendritic segregations formed during solidification. To investigate the homogenization behavior during solution heat treatment, a Ni-base single crystal superalloy, TMS-238, was heat treated under various conditions; temperatures ranging from 1573 to 1613 K for times ranging from 2 to 100 h. After solution heat treatment, the average concentrations of Re, an element that exhibits the highest degree of segregation, in dendrite core and inter-dendritic regions were analyzed. From these results, apparent diffusion constants, D app , were determined based on a proposed homogenization model. Obtained D app values were significantly smaller than the diffusion constant of Re in Ni, strongly suggesting that the apparent diffusion coefficients should be obtained experimentally when using the target alloy.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 855-860, October 15–18, 2024,
Abstract
View Paper
PDF
Coke drums experience failures in through-wall cracking throughout their operating life, resulting from low cycle fatigue. Coke drums are typically fabricated from Chrome Moly (CrMo) steels. This study was performed on P4 (1.25Cr-0.5Mo) base material using ER70S-B2L and Alloy 625 (ERNiCrMo-3) filler materials. Specimens were welded with the temper-bead/controlled deposition welding technique. The weld processes used were HP-GTAW, GMAW and SMAW. The fatigue performance, HAZ hardness and toughness of the weld samples was evaluated. The HP-GTAW welds exhibited an order of magnitude improvement in fatigue performance when compared to the other weld processes using ER70S-B2L filler material. The HP-GTAW welds also exhibited improved HAZ hardness and toughness when compared to the other weld processes. This presentation will introduce the HP-GTAW process, its features, and benefits and where it is applied in Coke drum repair welding. Comparative test results of the different weld processes for fatigue performance, HAZ tempering, and toughness will also be presented.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 933-944, October 15–18, 2024,
Abstract
View Paper
PDF
According to ASME Case N-888-3, Similar and Dissimilar Metal Welding Using Ambient Temperature SMAW or Machine GTAW Temper Bead Technique, a 48 hr waiting period before conducting the final nondestructive examination (NDE) is required when ferritic filler weld metal is used. The purpose of the 48 hr hold is to confirm the absence of hydrogen-induced cracking in the temper bead heat-affected zone. In previous research, the effect of post-weld heat treatment (PWHT) and temper bead welding (TBW) on the hydrogen-induced cracking (HIC) susceptibility in the coarse-grained heat-affected zone (CGHAZ) in welds of SA-508, P-No. 3 Group 3, pressure vessel steel was investigated using the Delayed Hydrogen Cracking Test (DHCT). In that previous study, the Gleeble thermomechanical simulator was used to generate six CGHAZ microstructural conditions: as-welded (AW), PWHT, and AW with single a TBW reheat at 675, 700, 725, and 735°C. Hydrogen was introduced to the specimen through cathodic charging under in situ constant tensile stress. The HIC susceptibility for these microstructures was ranked by the DHCT at a diffusible hydrogen level significantly exceeding typical GTAW and SMAW processes. The work described in this paper investigates the susceptibility to HIC of these same CGHAZ microstructures with DHCT at variable current densities, further ranking each condition. Test results were analyzed by fracture surface examination of failed tests, and cross-section microstructural analysis under a scanning electron microscope (SEM). Future steps include evaluating critical hydrogen content levels using gas chromatography for each condition. The results from this study will be used to consider potential elimination of the NDE hold time requirement in Case N-888-3 when ferritic weld metal is used.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 945-959, October 15–18, 2024,
Abstract
View Paper
PDF
Steels have a proven track record of safe operation in steam power plants for decades. Interest in developing supercritical CO 2 power cycles as a more efficient and sustainable alternative to steam cycles has driven a need to understand steel performance in these new environments. In particular, the potential of the high temperature CO 2 environment to influence the creep behavior of the steel must be determined. Prior research on this topic between the 1960s and 1980s found conflicting conclusions, but nevertheless raised the possibility that carburization during CO 2 exposure may strongly affect the creep behavior. This raises concerns particularly for thin-sectioned components such as compact heat exchangers, where even small rates of carburization can become problematic over long operating lifetimes. To shed light on this issue, this research investigates the creep behavior of austenitic stainless steel 347H and 309H (a higher Cr alternative) at 650°C. Specimens of 0.5, 1.0, and 2.0 mm thickness were tested to further assess the effect of steel thickness. Both steels show a reduction in creep life in CO 2 relative to air, with 309H showing slightly better performance than 374H. Analysis is ongoing to determine the reason for degraded creep properties.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 994-1007, October 15–18, 2024,
Abstract
View Paper
PDF
Laser additive manufacturing (AM) is being considered by the nuclear industry to manufacture net- shape components for advanced reactors and micro reactors. Part-to-part and vendor-to-vendor variations in part quality, microstructure, and mechanical properties are common for additively manufactured components, attributing to the different processing conditions. This work demonstrates the use of microstructurally graded specimen as a high throughput means to establish the relationship between process-microstructure-creep properties. Through graded specimen manufacturing, multiple microstructures, correlated to the processing conditions, can be produced in a single specimen. The effects of a solution annealing heat treatment on the microstructure and creep properties of AM 316H are investigated in this work. Using digital image correlation (DIC), the creep strain can be calculated in these graded regions, allowing for multiple microstructures to be probed in a single creep test. The solution annealing heat treatment was not sufficient in recrystallization of the large, elongated grains in the AM material; however, it was sufficient in removing the cellular structure commonly found in AM processed alloys creating a network of subgrains in their place. The resulting changes in microstructure and mechanical properties are presented. The heat treatment was found to generally increase the minimum creep rate, reduce the minimum creep rate, and reduce the ductility. Significant amounts of grain boundary carbides and cavitation were observed.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 1020-1032, October 15–18, 2024,
Abstract
View Paper
PDF
This study evaluates the elevated temperature mechanical performance of 316H stainless steel produced using directed energy deposition (DED) additive manufacturing (AM) from three separate collaborative research programs focused on understanding how AM variables affect creep performance. By combining these studies, a critical assessment of variables was possible including the DED AM method (laser powder and gas metal arc wire), laser power, sample orientation relative to build orientation, chemical composition, and post-processing heat treatment. Detailed microstructure characterization was used to supplement creep and chemistry results to provide insights into potential mechanistic differences in behavior. The study found that sample orientation was a critical variable in determining lower-bound creep behavior, but that in general the lowest creep strength orientation and the lowest creep ductility orientation were not the same. Heat treatment was also an important variable with as-printed materials showing for specific test conditions improved performance and that underlying substructures formed due to inhomogeneous chemical distributions were not completely removed when using standard wrought solution annealing heat-treatments. The chemistry of the final deposited parts differed from the starting stock and may be an important consideration for long-term performance which is not fully appreciated. Overall, the study found that while all the DED materials tested fell within an expected wrought scatter band of performance, the actual creep performance could vary by an order of magnitude due to the many factors described.
1