Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-2 of 2
Laser cladding
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 111-112, February 25–28, 2025,
Abstract
View Papertitled, Surface Characterization of Laser Clad Surfaces using Profile and Arial Techniques
View
PDF
for content titled, Surface Characterization of Laser Clad Surfaces using Profile and Arial Techniques
Diode laser cladding (DLC) surfaces, valued in the nuclear industry for their wear resistance, corrosion protection, and oxidation resistance, present unique challenges in surface characterization compared to conventionally machined surfaces. While traditional machined surfaces exhibit predictable, periodic topographies that can be validated through simple linear profile measurements, DLC surfaces feature distinctive metal tracks with central peaks and inter-track troughs, creating a wave-like structure with randomly distributed spherical asperities. This complex topography cannot be adequately characterized by traditional single-trace sampling methods due to significant variations in localized features at peaks and troughs. To address this challenge, this study examines DLC surfaces produced under varying control parameters (laser power, head travel speed, powder feed rate, and track offset) using laser confocal microscopy. Both profile and areal surface measurements are compared to identify the most effective method for characterizing DLC surface structure and quality, providing a foundation for standardized quality assessment in industrial applications.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 852-862, October 21–24, 2019,
Abstract
View Papertitled, Method of On-Site Repairing Steam Turbine Valve Seat with Laser Cladding
View
PDF
for content titled, Method of On-Site Repairing Steam Turbine Valve Seat with Laser Cladding
Steam turbine is one of the critical equipments in coal-fired power plants, steel P91 is a common material of its control valves. CoCr-based hardfacing on valve seats can resist long time exposure to water vapor with high temperature, thermal fatigue and solid particles erosion under high pressure. However, these hardfacing can crack and disbond during operation, which generates high risks for turbine systems and power plants. This article discussed the failure reasons of CoCr-based hardfacing, and introduced a method and practical experience of on-site repairing steam turbine valve seats with laser cladding NiCr coating.