Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-4 of 4
Electron beam melting
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 558-569, October 21–24, 2019,
Abstract
View Papertitled, Microstructure and Mechanical Properties of Haynes 282 Fabricated by Electron Beam Melting
View
PDF
for content titled, Microstructure and Mechanical Properties of Haynes 282 Fabricated by Electron Beam Melting
The Haynes 282 Ni-based superalloy (57Ni-20Cr-10Co-8.5Mo-2.1Ti-1.5Al) is a very promising candidate for the fabrication by additive manufacturing of gas turbine components of complex geometries. Alloy 282 was fabricated by electron beam melting (EBM) and exposed to two different heat treatments, (a) solution anneal (SA) at 1135°C followed by the standard 2-step aging treatment (2h at 1010°C plus 8h at 788°C) and (b) SA followed by 4h 800°C. Large elongated grains were observed for the as-fabricated and annealed EBM 282 materials, with a γ′ (Ni 3 (Al,Ti)) average size of ~100 nm and 20 nm, respectively. The as-fabricated EBM 282 alloy exhibited good ductility at 20-900°C and tensile strength slightly lower than the tensile strength of wrought 282. Annealing the alloy resulted in a moderate increase of the alloy strength at 800 and 900°C but a decrease of the alloy ductility. The creep lifetime at 800°C, 200MPa of the as-fabricated and annealed EBM 282 specimens machined along the build direction was 2 times and 1.5 times superior to the expected lifetime for wrought 282, respectively. For creep specimens machined perpendicular to the build direction, the lifetimes were ~25% lower compared to the wrought alloy. These creep results are directly related to the strong grain texture of the EBM 282 alloy and the limited impact of the initial γ′ (Ni 3 (Al,Ti)) size on alloy 282 creep properties.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 836-841, October 21–24, 2019,
Abstract
View Papertitled, Anisotropic Mechanical Properties of EBM Manufactured Alloy 718
View
PDF
for content titled, Anisotropic Mechanical Properties of EBM Manufactured Alloy 718
Alloy 718 is one of the most widely used for aircraft engine and gas turbine components requiring oxidation and corrosion resistance as well as strength at elevated temperatures. Alloy 718 has been produced in both wrought and cast forms, but metal injection molding and metal-based additive manufacturing (AM) technologies have the potential to create a three-dimensional component. Their mechanical properties are highly dependent on the types of powder processing, but the relationship between microstructures and properties has not been clarified. In this study, the mechanical properties of Alloy 718 manufactured by AM are compared to cast and wrought properties. The electron beam melting processed specimens with strong anisotropy showed higher yield strength, which can be explained by critical resolved shear stress. In addition, the creep deformation showed a complicated behavior which was different from that of wrought alloy. Such abnormal behavior was characterized by γ-channel dislocation activity.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 897-903, October 21–24, 2019,
Abstract
View Papertitled, Influence of Unique Layered Microstructure on Mechanical Properties of TiAl-Based Alloys Prepared by Electron Beam Melting
View
PDF
for content titled, Influence of Unique Layered Microstructure on Mechanical Properties of TiAl-Based Alloys Prepared by Electron Beam Melting
Electron beam melting (EBM) is one of the candidate manufacturing processes for TiAl alloys which have been considered as next generation high-temperature structural materials. The microstructure and mechanical properties of Ti-48Al-2Cr-2Nb (48-2-2) alloy bars fabricated using EBM were investigated, with a particular focus on the effect of processing parameters such as input energy density and building direction. We observed that the microstructure of the alloy bars fabricated using EBM depends strongly on the processing parameters used during the fabrication process of alloy. In particular, the alloy bars fabricated under appropriate processing parameters have a unique layered microstructure composed of duplex regions and equiaxed γ-grain regions (γ bands). Because of their fine microstructure and deformable soft γ bands, the alloy bars with the unique layered microstructure exhibit higher strength and higher ductility at room temperature (RT) than that of cast alloys. In addition, the alloy bars fabricated at an angle between the building direction and the loading axis of 45° show good fatigue properties at RT even without hot isostatic pressing treatment.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 976-980, October 21–24, 2019,
Abstract
View Papertitled, Oxidation Behavior of Alloy 718 Built Up by Selective Laser Melting
View
PDF
for content titled, Oxidation Behavior of Alloy 718 Built Up by Selective Laser Melting
The current work presented a study of isothermal-oxidation behavior of the additive manufactured (AM) Alloy718 in air at 800°C. The oxidation behavior of Alloy718 specimens produced by selective laser melting (SLM) and electron beam melting (EBM) process were comparatively examined. No significant differences were observed in oxidation kinetics while different microstructures of the oxide scale were found. Coarse and columnar chromia grains developed on SLM specimens, whereas the chromia scale of EBM specimens consisted of extremely fine grains. Glow Discharge Optical Emission Spectrometry (GD-OES) analysis revealed that SLM specimens contain a higher content of Ti in chromia compared with EBM specimens. Process-induced supersaturation in SLM specimens might lead to a relatively high concentration of Ti in the chromia, which may affect the grain morphology of oxide scale in the SLM specimen.