Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-20 of 126
Superalloys
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 1-12, October 15–18, 2024,
Abstract
View Paper
PDF
Ni-based superalloy Haynes 282 is a prime candidate for advanced power generation systems due to its superior fabricability, weldability, and high-temperature performance. Additive manufacturing offers potential cost and time savings for gas turbine components. Wire-arc direct energy deposition can create large components but often requires post-processing treatments, such as hot isostatic pressing (HIP), to address porosity. This study explores a low heat-input, high deposition rate GMAW process to achieve fully dense Haynes 282 without HIP. Twenty-one blocks were deposited, varying travel and wire feed speeds. Initial analysis (visual inspection, microstructural examination, and CT) revealed the impact of build parameters on internal porosity and defects. Scanning electron microscopy provided insights into structural heterogeneity and microstructural properties.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 13-22, October 15–18, 2024,
Abstract
View Paper
PDF
For the safe operation of high temperature equipment, it is necessary to ensure creep rupture ductility of the components from the viewpoint of notch weakening. In this study, the effect of heat treatment conditions on creep rupture ductility was evaluated and its underlying metallurgical mechanism was investigated with using a forged Ni-based superalloy Udimet520. In order to improve the creep rupture ductility without lowering the creep rupture strength, it is important to increase both intragranular strength and intergranular strength in a balanced manner. For this purpose, it was clarified that 1) secondary γ' phase within grains should be kept fine and dense, 2) grain boundaries should be sufficiently covered by M 23 C 6 carbide by increasing its phase fraction, and 3) tertiary γ' phase within grains should be redissolved before the start of creep. To obtain such a precipitate state, it is essential to appropriately select the cooling rate after solution treatment, stabilizing treatment and aging treatment conditions.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 74-87, October 15–18, 2024,
Abstract
View Paper
PDF
The power industry has been faced with continued challenges around decarbonization and additive manufacturing (AM) has recently seen increased use over the last decade. The use of AM has led to significant design changes in components to improve the overall efficiency of gas turbines and more recently, hot-section components have been fabricated using AM nickel-base superalloys, which have shown substantial benefits. This paper will discuss and summarize extensive studies led by EPRI in a novel AM nickel-base superalloy (ABD·900-AM). A comprehensive high temperature creep testing study including >67,000 hours of creep data concluded that ABD-900AM shows improved properties compared to similar ~35% volume fraction gamma prime strengthened nickel-base superalloys fabricated using additive methods. Several different creep mechanisms were identified and various factors influencing high temperature behavior, such as grain size, orientation, processing method, heat treatment, carbide structure, chemistry and porosity were explored. Additional studies on the printability, recyclability of powder, wide range of process parameters and several other factors have also been studied and results are summarized. A summary on the alloy -by-design approach and accelerated material acceptance of ABD-900AM through extensive testing and characterization is further discussed. Numerous field studies and examples of field use cases in ABD-900AM are also evaluated to showcase industry adoption of ABD-900AM.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 235-246, October 15–18, 2024,
Abstract
View Paper
PDF
During the last decades, new generations of Ni-based superalloys have emerged with judiciously controlled chemistries. These alloys heavily rely on the addition of refractory elements to enhance their mechanical properties at elevated temperatures; however, a clear interpretation of the influence of these minor-element additions on the alloy's high-temperature oxidation behavior is still not well understood, particularly from the standpoint of predicting the transition from internal to external alumina formation. In this context, the present investigation describes a systematic study that addresses the intrinsic effects that minor element additions of Nb, Ta, and Re have on the oxidation behavior of alumina-scale forming γ-Ni alloys. By combining a novel simulation approach with high-temperature oxidation experiments, the present study evidences the generally positive effect associated with 2 at. % addition of Ta and Re as well as the detrimental consequences of Nb additions on the 1100 °C oxidation of (in at. %) Ni-6Al-(0,4,6,8)Cr alloys.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 259-269, October 15–18, 2024,
Abstract
View Paper
PDF
Gas turbine blades made from nickel-based superalloys, valued for their high temperature stability and creep resistance, undergo various forms of microstructural degradation during extended service at elevated temperatures that can ultimately lead to blade failure. To extend blade and turbine rotor life, Sulzer has developed evaluation and rejuvenation processes that include microstructural assessment and stress rupture testing of specimens from service-exposed blades. While stress rupture testing presents certain limitations and challenges in evaluating material condition, Sulzer has successfully rejuvenated hundreds of gas turbine blade sets across multiple superalloy types, including GTD 111, IN 738 LC, and U 500, demonstrating the effectiveness of heat treatment rejuvenation in improving microstructure and mechanical properties of service-degraded components.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 338-354, October 15–18, 2024,
Abstract
View Paper
PDF
Inconel 718 is a nickel-based superalloy known for its excellent combination of high-temperature strength, corrosion resistance, and weldability. Additive Manufacturing (AM) has revolutionized traditional manufacturing processes by enabling the creation of complex and customized components. In this work, three prominent AM techniques: Laser-Based Powder Bed Fusion (PBF), Wire Direct Energy Deposition (DED), and Binder Jet (BJ) processes were explored. A thorough metallographic analysis and comparison of samples was conducted after short-term creep testing originating from each of the three aforementioned techniques in addition to wrought material. Detailed electron microscopy unveiled equiaxed grains in both BJ and wrought samples while PBF samples displayed elongated finer grain structures in the build direction, characteristic of PBF. The DED samples revealed a more bimodal grain distribution with a combination of smaller equiaxed grains accompanied by larger more elongated grains. When assessing the three processes, the average grain size was found to be larger in the BJ samples, while the PBF samples exhibited the most significant variation in grain and sub-grain size. Number density, size, and shape of porosity varied between all three techniques. Post-creep test observations in PBF samples revealed the occurrence of wedge cracking at the failure point, accompanied by a preference for grain boundary creep void formation while BJ samples exhibited grain boundary creep void coalescence and cracking at the failure location. In the DED samples, void formation was minimal however, it seemed to be more prevalent in areas with precipitates. In contrast, the wrought sample showed void formation at the failure site with a preference for areas with primary carbide formation. Despite BJ samples demonstrating similar or even superior rupture life compared to other AM techniques, a noteworthy reduction in rupture ductility was observed. While a coarse, uniform grain size is generally linked to enhanced creep resistance and rupture life, the combination of pre-existing voids along grain boundaries and the formation of new voids is hypothesized to accelerate rapid fracture, resulting in diminished ductility. This research shows careful consideration is needed when selecting an AM technology for high- temperature applications as creep behavior is sensitive to the large microstructural variations AM can introduce.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 441-448, October 15–18, 2024,
Abstract
View Paper
PDF
Alloy 718 is an important class of Nb-bearing Ni-based superalloys for high-temperature applications, such as compressor disks/blades and turbine disks in gas turbine systems. The service temperature of this alloy is, however, limited below 650 °C probably due to the degradation of its strengthening phase γ"-Ni3Nb. Aiming at understanding and improving creep properties of 718-type alloys, we investigated creep behaviors of alloy 718 and alloy Ta-718 where different types of γ" phases, Ni3Nb and Ni3Ta, were precipitated, respectively. Creep tests were conducted at 700 °C under stress conditions of 400 and 500 MPa for the two alloys in aged conditions. It was found that while the minimum creep rates were comparable in the two alloys, the creep rate acceleration was lower in alloy Ta-718 than in alloy 718 under the creep conditions studied. Microstructural observations on the specimens before and after the creep tests suggested that the γ" precipitates were distinguishably finer in alloy Ta-718 than in alloy 718 throughout the creep tests. The formation of planar defects and shearing of γ" precipitates occurred frequently in the alloy 718 specimen. The observed creep deformations were discussed in terms of the critical resolved shear stress due to shearing of γ" particles by strongly paired dislocations.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 449-460, October 15–18, 2024,
Abstract
View Paper
PDF
This study demonstrates the Electro-Thermal Mechanical Testing (ETMT) system's capability to analyze the thermo-mechanical behavior of Inconel 718 (IN718) at a heating rate of 5 °C/s, achieving temperatures up to 950 °C. The temperature profile peaks at the sample's center and is approximately 25 °C at the extremes. Upon reaching 950 °C, the sample was aged for 30 hours before being rapidly quenched. This process froze the microstructure, preserving the phase transformations that occurred at various temperatures across the temperature parabolic gradient, which resulted in a complex gradient microstructure, providing a comprehensive map of phase transformations in IN718. The integration of thermal measurement, COMSOL modeling, scanning electron microscopy enabled a thorough characterization of the microstructural evolution in IN718, linking observed phases to the specific temperatures which provided a rapid screening of the effect of using different heating treatment routes.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 483-494, October 15–18, 2024,
Abstract
View Paper
PDF
For the safe life prediction of components under high cycle fatigue loading at high temperature, such as gas turbine blades and turbocharger components, the behavior of initial defects, which are physically short cracks below the long crack threshold ΔK is of crucial importance. The evolution of different crack closure mechanisms (such as plasticity, roughness and oxide induced crack closure) can lead to crack arrest by a reduction of the effective crack tip loading. To visualize the crack growth behavior of such cracks, cyclic crack resistance curves (cyclic R-curves) are used. The experimental determination of cyclic R-curves is challenging, especially under high temperature conditions due to a lack of optical accessibility. The formation of very short cracks in high strength materials makes it even more complicated to reliably determine these data. Within this study the crack growth behavior of physically short fatigue cracks in three different material states of the nickel alloy IN718 (wrought, cast and PBF-LB/M - processed) is experimentally determined at 650 °C. Based on a load increase procedure applied on Single Edge Notched (SEN) specimens with a compression pre-cracking procedure in advance, crack propagation of physically short cracks is measured with alternating current potential drop systems in air and under vacuum conditions. These examinations are carried out for three different load ratios (R = -1, 0 and 0.5) to investigate the amount of certain crack closure mechanisms active under different loading conditions. Moreover, the formation of a plastic wake along the crack flanks is determined by a finite element simulation. The results determined in air and under vacuum conditions are used to describe the impact of oxide induced crack closure on the behavior of physically short cracks. This allows the evaluation of the behavior of both near-surface and internal defects that are not accessible to the atmosphere.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 495-506, October 15–18, 2024,
Abstract
View Paper
PDF
Additive manufacturing is a groundbreaking manufacturing method that enables nearly lossless processing of high-value materials and produces complex components with a level of flexibility that traditional methods cannot achieve. Wire arc additive manufacturing (WAAM), utilizing a conventional welding process such as gas metal arc welding, is one of the most efficient additive manufacturing technologies. The WAAM process is fully automated and guided by CAD/CAM systems on robotic or CNC welding platforms. This paper explores the fundamental concepts and metallurgical characteristics of WAAM. It focuses primarily on the mechanical properties of printed sample structures made from P91, X20, and alloys 625 and 718 wire feedstock. The study particularly addresses the anisotropy of mechanical properties through both short-term and long-term testing, comparing these results to materials processed using conventional methods.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 592-599, October 15–18, 2024,
Abstract
View Paper
PDF
The aspiration to deploy Nb-based alloys as viable upgrade for Ni-based superalloys is rooted in their potential for superior performance in high-temperature applications, such as rocket nozzles and next-generation turbines. However, realizing this goal requires overcoming formidable design hurdles, including achieving high specific strength, creep resistance, fatigue, and oxidation resistance at elevated temperatures, while preserving ductility at lower temperatures. Additionally, the requisite for alloy bond-coatings, to ensure compatibility with coating materials, further complicates the design process. QuesTek Innovations has its Integrated Computational Materials Engineering (ICME) technologies to design a superior performance high-temperature Nb-based superalloy based on solid solution and precipitation strengthening. Additionally, utilizing a statistical learning method from very limited available data, QuesTek engineers were able to establish physics-based material property models, enabling accurate predictions of equilibrium phase fraction, DBTT, and creep properties for multicomponent Nb alloys. With the proven Materials by Design methodology under the ICME framework, QuesTek successfully designed a novel Nb superalloy that met the stringent design requirements using its advanced ICMD materials modeling and design platform.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 650-661, October 15–18, 2024,
Abstract
View Paper
PDF
High gamma prime Ni-based superalloys comprising ≥3.5 % Al are difficult to weld due to high propensity of these materials to weld solidification, heat affected zone liquation, and stress-strain cracking. In this study the root cause analysis of cracking and overview on the developed weldable Ni-based superalloys for repair of turbine engine components manufactured from equiaxed (EA), directionally solidified (DS), and single crystal (SX) materials as well as for 3D AM is provided. It is shown that the problem with the solidification and HAZ liquation cracking of turbine engine components manufactured from EA and DS superalloys was successfully resolved by modification of welding materials with boron and silicon to provide a sufficient amount of eutectic at terminal solidification to promote self-healing of liquation cracks along the weld - base material interface. For crack repair of turbine engine components and 3D AM ductile LW4280, LW7901 and LCT materials were developed. It is shown that LW7901 and LCT welding materials comprising 30 - 32 wt.% Co produced sound welds by GTAW-MA on various SX and DS materials. Welds demonstrated high ductility, desirable combination of strength and oxidation properties for tip repair of turbine blades. Examples of tip repair of turbine blades are provided.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 678-689, October 15–18, 2024,
Abstract
View Paper
PDF
This study investigates the influence of build orientation on the high-temperature mechanical properties of IN738LC manufactured via metal laser powder bed fusion (PBF-LB/M). Since the PBF-LB/M layer-wise manufacturing process significantly affects grain morphology and orientation—ranging from equiaxed to textured grains—mechanical properties typically exhibit anisotropic behavior. Samples were manufactured in three build orientations (0°, 45°, and 90°) and subjected to hot tensile and creep testing at 850°C following DIN EN ISO 6892-2 and DIN EN ISO 204 standards. While tensile properties of the 45° orientation predictably fell between those of 0° and 90° orientations, creep behavior over 100-10,000 hours revealed unexpected results: the 45° orientation demonstrated significantly shorter rupture times and faster creep rates compared to other orientations. Microstructural analysis revealed distinct creep deformation mechanisms active within different build orientations, with the accelerated creep rate in 45° specimens attributed to multiple phenomena, particularly η-phase formation and twinning. These findings provide crucial insights into the orientation-dependent creep behavior of PBF-LB/M-manufactured IN738LC components.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 699-711, October 15–18, 2024,
Abstract
View Paper
PDF
Advanced power generation systems, including advanced ultrasupercritical (A-USC) steam and supercritical carbon dioxide (sCO 2 ) plants operating above 700°C, are crucial for reducing carbon dioxide emissions through improved efficiency. While nickel superalloys meet these extreme operating conditions, their high cost and poor weldability present significant challenges. This study employs integrated computational materials engineering (ICME) strategies, combining computational thermodynamics and kinetics with multi-objective Bayesian optimization (MOBO), to develop improved nickel superalloy compositions. The novel approach focuses on utilizing Ni 3 Ti (η) phase strengthening instead of conventional Ni 3 (Ti,Al) (γ’) strengthening to enhance weldability and reduce costs while maintaining high-temperature creep strength. Three optimized compositions were produced and experimentally evaluated through casting, forging, and rolling processes, with their microstructures and mechanical properties compared to industry standards Nimonic 263, Waspaloy, and 740H. Weldability assessment included solidification cracking and stress relaxation cracking tests, while hot hardness measurements provided strength screening. The study evaluates both the effectiveness of the ICME design methodology and the practical potential of these cost-effective η-phase strengthened alloys as replacements for traditional nickel superalloys in advanced energy applications.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 766-783, October 15–18, 2024,
Abstract
View Paper
PDF
Ni-base superalloys used for hot section hardware of gas turbine systems experience thermomechanical fatigue (TMF), creep, and environmental degradation. The blades and vanes of industrial gas turbines (IGTs) are made from superalloys that are either directionally-solidified (DS) or cast as single crystals (SX). Consequently, designing and evaluating these alloys is complex since life depends on the crystallographic orientation in addition to the complexities related to the thermomechanical cycling and the extent of hold times at elevated temperature. Comparisons between the more complex TMF tests and simpler isothermal low cycle fatigue (LCF) tests with hold times as cyclic test methods for qualifying alternative repair, rejuvenation, and heat-treatment procedures are discussed. Using the extensive set of DS and SX data gathered from the open literature, a probabilistic physics-guided neural network is developed and trained to estimate life considering the influence of crystallographic orientation, temperature, and several other cycling and loading parameters.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 814-820, October 15–18, 2024,
Abstract
View Paper
PDF
To maximize the mechanical properties of Ni-base superalloys, solution heat treatment is essential to sufficiently homogenize the dendritic segregations formed during solidification. To investigate the homogenization behavior during solution heat treatment, a Ni-base single crystal superalloy, TMS-238, was heat treated under various conditions; temperatures ranging from 1573 to 1613 K for times ranging from 2 to 100 h. After solution heat treatment, the average concentrations of Re, an element that exhibits the highest degree of segregation, in dendrite core and inter-dendritic regions were analyzed. From these results, apparent diffusion constants, D app , were determined based on a proposed homogenization model. Obtained D app values were significantly smaller than the diffusion constant of Re in Ni, strongly suggesting that the apparent diffusion coefficients should be obtained experimentally when using the target alloy.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 861-872, October 15–18, 2024,
Abstract
View Paper
PDF
The advancement of additive manufacturing (AM) technology has heightened interest in producing components from nickel-based superalloys for high-temperature applications; however, developing high gamma prime (γ’) strengthened alloys suitable for AM at temperatures of 1000°C or higher poses significant challenges due to their “non-weldable” nature. Traditional compositions intended for casting or wrought processes are often unsuitable for AM due to their rapid heating and cooling cycles, leading to performance compromises. This study introduces ABD-1000AM, a novel high gamma prime Ni-based superalloy designed using the Alloys-by-Design computational approach to excel in AM applications at elevated temperatures. Tailored for AM, particularly powder bed fusion, ABD-1000AM demonstrates exceptional processing capability and high-temperature mechanical and environmental performance at 1000°C. The study discusses the alloy design approach, highlighting the optimization of key performance parameters, composition, and process-microstructure-performance relationships to achieve ABD-1000AM’s unique combination of processability and creep resistance. Insights from ABD-1000AM’s development inform future directions for superalloy development in complex AM components.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 897-908, October 15–18, 2024,
Abstract
View Paper
PDF
There is a critical lack of data on the mechanical behavior of candidate structural materials for advanced nuclear reactors under molten halide salt environments. Limited legacy data from the molten salt reactor experiment (MSRE) program showed a significant reduction in creep rupture strength of a Ni-base alloy in molten fluoride salt. With ongoing efforts to commercialize different molten salt reactor concepts, the industry can considerably benefit from quantitative information on the impact of molten halide salts on the engineering properties such as creep and fatigue strength of materials of interest. The present work aims to assess the role of molten salt corrosion on the creep behavior of three alloys 316H, 617 and 282 at 650-816 °C. Creep tests were conducted in fluoride (FLiNaK) and chloride (NaCl-MgCl 2 ) salts. Initial results from the ongoing testing will be presented which suggest that the molten salt environment caused a 25-50% reduction in creep rupture lifetime compared to air exposures. Physics-based corrosion and creep models were employed to gain some insights into the potential degradation mechanisms.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 1008-1019, October 15–18, 2024,
Abstract
View Paper
PDF
This study addresses the welding challenges encountered when joining Haynes 282, a heat-resistant superalloy, to 3.5NiCrMoV high-strength low alloy steel (HSLA) for advanced power plant applications, particularly in thick-section components like rotors. The project demonstrated successful thick-section dissimilar metal welding up to 76 mm (3 in.) using two techniques: keyhole tungsten inert gas welding and conventional gas tungsten arc welding with Haynes 282 filler metal. Various groove weld geometries were evaluated, supported by computational weld modeling to predict and minimize weld distortion. The results validate these welding approaches for critical power plant components requiring both high-temperature performance and cost-effectiveness.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 1033-1043, October 15–18, 2024,
Abstract
View Paper
PDF
For future carbon neutral society, a novel thermal power generation system with no CO 2 emission and with extremely high thermal efficiency (~ 70 %) composed of the oxygen/hydrogen combustion gas turbine combined with steam turbine with the steam temperature of 700°C is needed. The key to realize the thermal power plant is in the developments of new wrought alloys applicable to both gas turbine and steam turbine components under higher temperature operation conditions. In the national project of JST-Mirai program, we have constructed an innovative Integrated Materials Design System , consisting of a series of mechanical property prediction modules (MPM) and microstructure design modules (MDM). Based on the design system, novel austenitic steels strengthened by Laves phase with an allowable stress higher than 100 MPa for 10 5 h at 700°C was developed for the stream turbine components. In addition, for gas turbine components, novel solid-solution type Ni-Cr-W superalloys were designed and found to exhibit superior creep life longer than 10 5 h under 10 MPa at 1000°C. The superior long-term creep strengths of these alloys are attributed to the “grain-boundary precipitation strengthening (GBPS)” effect due to C14 Fe 2 Nb Laves phase and bcc α 2 -W phase precipitated at the grain boundaries, respectively.
1