Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-7 of 7
Cast metal products
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 273-281, October 21–24, 2019,
Abstract
View Paper
PDF
This study presents a characterization of the microstructural evolutions taking place in a 9%Cr martensitic cast steel subjected to fatigue and creep-fatigue loading. Basis for this study of investigation is an extensive testing program performed on a sample heat of this type of steel by conducting a series of service-like high temperature creep-fatigue tests. The major goal here was to systematically vary specific effects in order to isolate and describe relevant damage contributing mechanisms. Furthermore, some of the tests have been interrupted at several percentages of damage to investigate not only the final microstructure but also their evolution. After performing those tests, the samples were examined using transmission electron microscopy (TEM) to characterize and quantify the microstructural evolutions. The size distribution of subgrains and the dislocation density were determined by using thin metal foils in TEM. A recovery process consisting of the coarsening of the subgrains and a decrease of the dislocation density was observed in different form. This coarsening is heterogeneous and depends on the applied temperature, strain amplitude and hold time. These microstructural observations are consistent with the very fast deterioration of creep properties due to cyclic loading.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 35-46, October 11–14, 2016,
Abstract
View Paper
PDF
The necessity to reduce carbon dioxide emissions of new fossil plant, while increasing net efficiency has lead to the development of not only new steels for potential plant operation of 650°C, but also cast nickel alloys for potential plant operation of up to 700°C and maybe 750°C. This paper discusses the production of prototype MarBN steel castings for potential plant operation up to 650°C, and gamma prime strengthened nickel alloys for advanced super critical plant (A-USC) operation up to 750°C. MarBN steel is a modified 9% Cr steel with chemical concentration of Cobalt and tungsten higher than that of CB2 (GX-13CrMoCoVNbNB9) typically, 2% to 3 Co, 3%W, with controlled B and N additions. The paper will discuss the work undertaken on prototype MarBN steel castings produced in UK funded research projects, and summarise the results achieved. Additionally, within European projects a castable nickel based super alloy has successfully been developed. This innovative alloy is suitable for 700°C+ operation and offers a solution to many of the issues associated with casting precipitation hardened nickel alloys.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 47-54, October 11–14, 2016,
Abstract
View Paper
PDF
Current demands of the power generation market require components with improved materials properties. The focus is not only on the higher operation temperatures and pressures but also more frequent cycling to accommodate the energy produced from renewable sources. Following the successful developments of steels within the COST 501, 522 and 536 programmes, further advances are being researched. As nickel superalloys remain an expensive option for coal power plants, there is a significant drive for improvements of 9-12% Cr steels to meet new demands. The most promising of the potential candidates identified for 650°C application is MarBN steel (9Cr-3Co-3W-V-Nb). This paper reviews the current state of European developments on MarBN steel. Work on this alloy has been carried out for the last 5 years. Initial projects focused on development of the cast components. UK IMPACT and following INMAP projects successfully demonstrated manufacturing capabilities of large casting components. More recent collaborations aim to develop full-size boiler components and large rotor forgings as well as further examine the properties in the operating conditions (i.e. corrosion and oxidation resistance, creep-fatigue behaviour). Additionally significant focus is placed on modelling the behaviour of MarBN components, in terms of both microstructural changes and the resulting properties.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 377-387, October 11–14, 2016,
Abstract
View Paper
PDF
Austenitic and super-austenitic stainless steels are a critical component of the spectrum of high temperature materials. With respect to power generation, alloys such as Super 304H and NF709 span a gap of capability between ferritic and martensitic high chromium steels and nickel-based alloys in boiler tube applications for both conventionally fired boilers and heat-recovery steam generators (HRSG). This research explores a wrought version of a cast austenitic stainless steel, CF8C-Plus or HG10MNN, which offers promise in creep strength at relatively low cost. Various manufacturing techniques have been employed to explore the impact of wrought processing on nano-scale microstructure and ultimately performance, especially in high temperature creep. Transmission electron microscopy has been used to quantify and characterize the creep-strengthening particles examining the relationship between traditional melting and extrusion as compared to powder metallurgy.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 790-801, October 11–14, 2016,
Abstract
View Paper
PDF
In this study, a possibility of application of advanced 9%Cr steel containing 130 ppm boron for boiler components utilized at around 650 °C to higher temperature steam turbine rotor materials has been investigated by means of reduction in silicon promoting macro-segregation in the case of large size ingots, using laboratory heats. Tempered martensitic microstructure without proeutectoid ferrite in all steels studied is obtained even at the center position of a turbine rotor having a barrel diameter of 1.2 m despite lower amounts of nitrogen and silicon. The strength at room temperature is almost the same level of practical high Cr steels such as X13CrMoCoVNbNB 9-2-1 for ultrasuper critical steam turbine rotors. The toughness is sufficient for high temperature rotors in comparison with CrMoV steels utilized as sub-critical high pressure steam turbine components. The creep rupture strength of the steels is higher than that of the conventional 9-12Cr steels used at about 630 °C. The creep rupture strength of 9%Cr steel containing 130 ppm B, 95 ppm N, 0.07 % Si and 0.05 % Mn is the highest in the steels examined, and it is therefore a candidate steel for high temperature turbine rotors utilized at more than 630 °C. Co-precipitation of M 23 C 6 carbides and Laves phase is observed around the prior austenite grain boundaries after the heat treatments and the restraint of the carbide growth is also observed during creep exposure. An improvement in creep strength of the steels is presumed to have the relevance to the stabilization of the martensitic lath microstructure in the vicinity of those boundaries by such precipitates.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 333-343, October 22–25, 2013,
Abstract
View Paper
PDF
Monoblock low-pressure (LP) turbine rotor shaft forgings for nuclear power plants have been produced from up to 600 ton ingots. However, ingots greater than 600 tons are necessary to increase the generator capacity. Segregation, non-metallic inclusions, and micro porosities inevitably increase with the increase in ingot size. Manufacturing such massive ingots with high soundness is quite difficult. Thus, the development of 650 ton ingot production was carried out in 2010. The 650 ton ingot was dissected and investigated to verify its internal quality. The internal quality of the 650 ton ingot was found to be equal to that of 600 ton ingots. Subsequently, in 2011, we produced a 670 ton ingot, the world’s largest, to produce a trial LP rotor shaft forging with a diameter of 3,200 mm. Results show that the internal quality, mechanical properties, and heat stability are the same as LP rotor shaft forgings made from 600 ton ingots.
Proceedings Papers
AM-EPRI2004, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fourth International Conference, 559-574, October 25–28, 2004,
Abstract
View Paper
PDF
Steels with 9-12% chromium content are widely used in steam turbines operating above 550°C due to their improved creep properties. Saarschmiede has extensive experience manufacturing high chromium steels, such as the X12CrMoWVNbN10-11-1 steel designed through the European COST program for application up to 610°C (COST Rotor E). From this steel, Saarschmiede produces high-pressure rotor shafts and gas turbine discs. To meet ever-increasing steam temperatures, a modified steel type with elevated boron content was developed, and pilot rotors have been manufactured. For ingot manufacturing of high chromium steels, Saarschmiede utilizes the Electro-Slag-Remelting process, allowing ingots up to 165 tons. Optimized forging and heat treatment procedures ensure reproducible forging properties. All products undergo rigorous destructive and non-destructive testing.