Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-11 of 11
Pressure vessels
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 39-49, February 25–28, 2025,
Abstract
View Papertitled, Comparison of the ASME Welding Qualification Code Requirements for Power Plants
View
PDF
for content titled, Comparison of the ASME Welding Qualification Code Requirements for Power Plants
The American Society of Mechanical Engineers (ASME) Boiler and Pressure Vessel Codes (BPVC) and Code for Pressure Piping have been utilized extensively for the construction and maintenance of plants in the power generation industry. These codes consist of different relevant sections that are applicable to the various pressure retaining components and their service application. This paper presents a comparison of the welding requirements between the various ASME construction codes outside of the qualification requirements within Section IX. Topics of discussion include preheat temperature, interpass temperature, postweld heat treatment, toughness testing, filler material requirements, and use of standard welding procedure specifications. Individual paragraphs and subparagraphs specific to these topics are compared and contrasted to establish their similarities and differences.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 183-194, February 25–28, 2025,
Abstract
View Papertitled, Complex Linear Welding Development for Thick Section Electron Beam Welding for Pressure Vessel Applications
View
PDF
for content titled, Complex Linear Welding Development for Thick Section Electron Beam Welding for Pressure Vessel Applications
As part of a Department of Energy (DOE) funded program assessing advanced manufacturing techniques for Small Modular Reactor (SMR) applications, the Nuclear Advanced Manufacturing Research Centre (AMRC) and the Electric Power Research Institute (EPRI) have been developing Electron Beam Welding (EBW) parameters and procedures based upon SA508 Grade 3 Class 1 base material. The transition shell, a complex component connecting the lower assembly to the upper assembly is a shell that flares up with varying thicknesses across its section. The component due to its geometry could be built by near net shape powder metallurgy hot isostatic pressing instead of conventional forging techniques. The demonstrator transition shell here is built from several sub-forging as a training exercise. The complex geometry and joint configuration were selected to assess the EBW as a suitable technique. This paper presents results from the steady state welding in the 60-110 mm material thickness range, showing that weld properties meet specification requirements. Weld quality was assured by Time-of-Flight Diffraction (ToFD). The transition shell was completed by welding a flange to the assembly. The presented transition shell assembly represents 6 welded sections all fabricated in below 100 min total welding time.
Proceedings Papers
Assessment of Cracking and Strain Monitoring of a Grade 92 Pipe from a Heat Recovery Steam Generator
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 296-303, February 25–28, 2025,
Abstract
View Papertitled, Assessment of Cracking and Strain Monitoring of a Grade 92 Pipe from a Heat Recovery Steam Generator
View
PDF
for content titled, Assessment of Cracking and Strain Monitoring of a Grade 92 Pipe from a Heat Recovery Steam Generator
In flexible operation with increased number of startup, shutdown, and load fluctuations, thermal fatigue damage is exacerbated along with existing creep damage in power plant pipe and pressure vessels. Recently, cracks were found in the start-up vent pipe branching from the reheat steam pipe within a heat recovery steam generator(HRSG) of J-class gas turbine, occurring in the P92 base material and repair welds. This pipe has been used at the power plant for about 10 years. Microstructural analysis of the cross-section indicated that the cracks were primarily due to thermal fatigue, growing within the grains without changing direction along the grain boundaries. To identify the damage mechanism and evaluate the remaining life, temperature and strain monitoring were taken from the damaged piping during startup and normal operation.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 843-854, February 25–28, 2025,
Abstract
View Papertitled, Sigma Embrittlement Evaluation Test for Dissimilar Welding Between F6NM and FXM-19
View
PDF
for content titled, Sigma Embrittlement Evaluation Test for Dissimilar Welding Between F6NM and FXM-19
In dissimilar welds between martensitic stainless steel F6NM and nitrogen-strengthened austenitic stainless steel FXM-19, type 209 austenitic welding consumables are used to align with the mechanical properties and chemical composition of FXM-19, with F6NM welds requiring post-weld heat treatment (PWHT) to restore ductility and toughness, raising concerns about sigma embrittlement in ER209 butter welds. This study investigated the mechanical properties and microstructure of F6NM+FXM-19 dissimilar welds, finding no detrimental sigma phase formation in the butter (PWHT) and groove weld metal (as welded) across various welding processes, indicating no sigma phase transformation due to PWHT. Submerged arc welding (SAW) and gas tungsten arc welding (GTAW) demonstrated good mechanical properties, while Gas Metal Arc Welding with 100% Ar gas shield (GMAW 100% Ar) could not be properly evaluated due to weld defects. SAW and GTAW were deemed suitable for this dissimilar weld joint, with several welding processes providing acceptable results using ER209 filler material for fabricating pressure vessels requiring F6NM to XM-19 joints.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 933-944, February 25–28, 2025,
Abstract
View Papertitled, Effect of Reheated CGHAZ Microstructure on Hydrogen-Induced Cracking Susceptibility in SA-508 Steel
View
PDF
for content titled, Effect of Reheated CGHAZ Microstructure on Hydrogen-Induced Cracking Susceptibility in SA-508 Steel
According to ASME Case N-888-3, Similar and Dissimilar Metal Welding Using Ambient Temperature SMAW or Machine GTAW Temper Bead Technique, a 48 hr waiting period before conducting the final nondestructive examination (NDE) is required when ferritic filler weld metal is used. The purpose of the 48 hr hold is to confirm the absence of hydrogen-induced cracking in the temper bead heat-affected zone. In previous research, the effect of post-weld heat treatment (PWHT) and temper bead welding (TBW) on the hydrogen-induced cracking (HIC) susceptibility in the coarse-grained heat-affected zone (CGHAZ) in welds of SA-508, P-No. 3 Group 3, pressure vessel steel was investigated using the Delayed Hydrogen Cracking Test (DHCT). In that previous study, the Gleeble thermomechanical simulator was used to generate six CGHAZ microstructural conditions: as-welded (AW), PWHT, and AW with single a TBW reheat at 675, 700, 725, and 735°C. Hydrogen was introduced to the specimen through cathodic charging under in situ constant tensile stress. The HIC susceptibility for these microstructures was ranked by the DHCT at a diffusible hydrogen level significantly exceeding typical GTAW and SMAW processes. The work described in this paper investigates the susceptibility to HIC of these same CGHAZ microstructures with DHCT at variable current densities, further ranking each condition. Test results were analyzed by fracture surface examination of failed tests, and cross-section microstructural analysis under a scanning electron microscope (SEM). Future steps include evaluating critical hydrogen content levels using gas chromatography for each condition. The results from this study will be used to consider potential elimination of the NDE hold time requirement in Case N-888-3 when ferritic weld metal is used.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 1044-1053, February 25–28, 2025,
Abstract
View Papertitled, Industrial Application of Local Vacuum Electron Beam Welding for Nuclear Reactor Components
View
PDF
for content titled, Industrial Application of Local Vacuum Electron Beam Welding for Nuclear Reactor Components
Local vacuum electron beam welding is an advanced manufacturing technology which has been investigated at Sheffield Forgemasters to develop as part of a cost-effective, reliable, agile, and robust manufacturing route for the next generation of civil nuclear reactors in the UK. A dedicated electron beam welding facility at Sheffield Forgemasters has been installed. This includes an x-ray enclosure, 100kW diode electron gun, 100T turntable, and weld parameter development vacuum chamber. A small modular reactor demonstrator vessel has successfully been manufactured with a wall thickness of 180 mm, including indication-free slope-in, steady- state and slope-out welding parameters. Electroslag strip cladding has also been investigated to demonstrate its viability in reactor pressure vessel manufacture. The electro-slag strip cladding method has been shown to produce high quality 60 mm strips on a 2600 mm inner diameter ring.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 1054-1065, February 25–28, 2025,
Abstract
View Papertitled, Evaluation of Directed Energy Deposition 316LSi Stainless Steel Pressure Boundary Parts
View
PDF
for content titled, Evaluation of Directed Energy Deposition 316LSi Stainless Steel Pressure Boundary Parts
Additive manufacturing is being considered for pressure boundary applications for power plant service by ASME Boiler and Pressure Vessel Code and regulators. Both existing and new plants could benefit from the reduced lead times, design flexibility, and part consolidation possible with additive manufacturing. Various ASME code committees are working towards rules and guidance for use of additive manufacturing. To further the industry's understanding, this research program was undertaken to evaluate the properties of wire arc additive manufactured 316L stainless steel. This study included microstructural characterization, chemical composition testing, mechanical testing, and nondestructive evaluation of multiple large (1600-pound (700 kg)) 316LSi stainless steel valve bodies produced using the gas metal arc directed energy deposition process followed by solution annealing. The results showed the tensile behavior over a range of temperatures was comparable to wrought material. No variation in tensile behavior was observed with change in tensile sample orientation relative to the build direction. Room temperature Charpy V-notch absorbed energy toughness was comparable to wrought material. Large grain sizes were observed in the metallographic samples, indicating that lowering the solution anneal temperature may be worthwhile. The results of surface and volumetric examination were acceptable when compared to forged material acceptance criteria. Together these results suggest that GMA-DED can produce acceptable materials properties comparable to forged materials requirements.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 1183-1194, February 25–28, 2025,
Abstract
View Papertitled, Machining Methods and Their Effect on the Fatigue Performance of SA508 Gr3 Class 2 and 316L Steels
View
PDF
for content titled, Machining Methods and Their Effect on the Fatigue Performance of SA508 Gr3 Class 2 and 316L Steels
Supercritical carbon dioxide cooling during machining has been identified as an effective measure to mitigate the risk of stress corrosion cracking in materials utilized in the primary circuit of light water reactors, particularly in pressure vessel structural steels. This study aims to compare two different cooling methods, the novel supercritical carbon dioxide and conventional high pressure soluble oil, employed during both milling and turning processes for SA508 Grade 3 Class 2 and AISI 316L steels. As the surface conditions of materials are critical to fatigue properties, such as crack initiation and endurance life, the fatigue performance of both cooling methods for each process were then evaluated and the impact on properties determined. To compare the potential benefits of supercritical carbon dioxide cooling against conventional soluble oil cooled machining, fatigue specimens were machined using industry relevant CNC machine tools. Surface finish and machining methods were standardized to produce two different specimen types, possessing dog- bone (milled) and cylindrical (turned) geometries. Force-controlled constant amplitude axial fatigue testing at various stress amplitudes was undertaken on both specimen types in an air environment and at room temperature using a stress ratio of 0.1. The fatigue performance of the supercritical carbon dioxide cooled specimens revealed substantially greater endurance lives for both SA508 and 316L materials, when compared with specimens machined using high pressure soluble oil cooling.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 647-654, October 21–24, 2019,
Abstract
View Papertitled, Investigation of the Steam Oxidation Resistance of Sanicro 25—A Material for Superheater and Reheaters in High Efficiency A-USC Fossil Power Plants
View
PDF
for content titled, Investigation of the Steam Oxidation Resistance of Sanicro 25—A Material for Superheater and Reheaters in High Efficiency A-USC Fossil Power Plants
Sanicro 25 material is approved for use in pressure vessels and boilers according ASME code case 2752, 2753 and VdTUV blatt 555. It shows higher creep rupture strength than any other austenitic stainless steels available today. It is a material for superheater and reheaters, enabling higher steam parameters of up to about 650 °C steam (ie about max 700 °C metal) without the need for expensive nickel based alloys. The aim of the present study is the investigation of the steam oxidation resistance of the Sanicro 25. The long term test was conducted in the temperature range 600 -750 °C up to 20 000 hours. The morphology of the oxide scale and the microstructure of the bulk material were investigated. In addition, the effect of surface finish and pressure on the steam oxidation were also studied.
Proceedings Papers
AM-EPRI2010, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Sixth International Conference, 933-948, August 31–September 3, 2010,
Abstract
View Papertitled, Strain Induced Hardening of Advanced Austenitic Stainless Steels Evaluation of Creep Properties
View
PDF
for content titled, Strain Induced Hardening of Advanced Austenitic Stainless Steels Evaluation of Creep Properties
Cold working and bending during boiler manufacturing can induce strain hardening in austenitic stainless steel, potentially compromising creep ductility and leading to premature failures during operation. While design codes like ASME I, PG 19 provide guidelines for maximum strain levels before solution treating is required, industry concerns suggest these limits may be too high, prompting some boiler manufacturers to implement more conservative thresholds. This study examined the creep ductility of four austenitic stainless steels (TP310HCbN, XA704, TX304HB, and Sanicro 25) at prior strain levels of 12% and 15%, with Sanicro 25 demonstrating the highest ductility, followed by TX304HB, XA704, and TP310HCbN. Solution annealing successfully restored creep ductility to exceed 10% elongation in all materials, though this treatment may be necessary at strains of 12% and 15% for all materials except Sanicro 25 to ensure adequate creep ductility. The findings suggest that ASME I PG 19 guidelines for austenitic stainless steels containing Cb, V, and N should be reviewed, as lower strain limits could help reduce strain-induced precipitation hardening failures.
Proceedings Papers
AM-EPRI2004, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fourth International Conference, 520-534, October 25–28, 2004,
Abstract
View Papertitled, Development of Steam Turbine Rotor Forging for High Temperature Application
View
PDF
for content titled, Development of Steam Turbine Rotor Forging for High Temperature Application
Growing energy demand promotes the construction of high performance energy plants with large scale. A dramatic increase of plant performance has been achieved by the enlargement of their major components such as turbine rotor shafts and pressure vessels. The Japan Steel Works, Ltd., has been continuing the efforts for improvements of production technology, material technology, reliability assessments and so on in order to attain high performance, high efficiency and reliable plants. The efforts gave birth to several epoch-making large and high quality forged components for energy plants. Recently, on the viewpoint of environmental problem such as global climate change, further development of new production technology and improvement of material has been continued. This paper gives an overview of the development of large high-quality forgings for high efficiency power generation plants.