Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-4 of 4
Coatings and coating materials
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 74-85, October 22–25, 2013,
Abstract
View Paper
PDF
The EU NextGenPower-project aims at demonstrating Ni-alloys and coatings for application in high-efficiency power plants. Fireside corrosion lab and plants trials show that A263 and A617 perform similar while A740H outperforms them. Lab tests showed promising results for NiCr, Diamalloy3006 and SHS9172 coatings. Probe trials in six plants are ongoing. A617, A740H and A263 performed equally in steamside oxidation lab test ≤750°C while A617 and A740H outperformed A263 at 800°C; high pressure tests are planned. Slow strain rate testing confirmed relaxation cracking of A263. A creep-fatigue interaction test program for A263 includes LCF tests. Negative creep of A263 is researched with gleeble tests. A263 Ø80 - 500mm trial rotors are forged with optimized composition. Studies for designing and optimizing the forging process were done. Segregation free Ø300 and 1,000mm rotors have been forged. A263 – A263 and A293 – COST F rotor welding show promising results (A263 in precipitation hardened condition). Cast step blocks of A282, A263 and A740H showed volumetric cracking after heat treatment. New ‘as cast’ blocks of optimized composition are without cracks. A 750°C steam cycle has been designed with integrated CO 2 capture at 45% efficiency (LHV). Superheater life at ≤750°C and co-firing is modeled.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 360-370, October 22–25, 2013,
Abstract
View Paper
PDF
While the water vapor content of the combustion gas in natural gas-fired land based turbines is ~10%, it can be 20-85% with coal-derived (syngas or H 2 ) fuels or innovative turbine concepts for more efficient carbon capture. Additional concepts envisage working fluids with high CO 2 contents to facilitate carbon capture and sequestration. To investigate the effects of changes in the gas composition on thermal barrier coating (TBC) lifetime, furnace cycling tests (1h cycles) were performed in air with 10, 50 and 90 vol.% water vapor and in CO 2 -10%H 2 O and compared to prior results in dry air or O 2 . Two types of TBCs were investigated: (1) diffusion bond coatings (Pt diffusion or simple or Pt-modified aluminide) with commercially vapor-deposited yttria-stabilized zirconia (YSZ) top coatings on second-generation superalloy N5 and N515 substrates and (2) high velocity oxygen fuel (HVOF) sprayed MCrAlYHfSi bond coatings with air-plasma sprayed YSZ top coatings on superalloy X4 or 1483 substrates. In both cases, a 20-50% decrease in coating lifetime was observed with the addition of water vapor for all but the Pt diffusion coatings which were unaffected by the environment. However, the higher water vapor contents in air did not further decrease the coating lifetime. Initial results for similar diffusion bond coatings in CO 2 -10%H 2 O do not show a significant decrease in lifetime due to the addition of CO 2 . Characterization of the failed coating microstructures showed only minor effects of water vapor and CO 2 additions that do not appear to account for the observed changes in lifetime. The current 50°-100°C de-rating of syngas-fired turbines is unlikely to be related to the presence of higher water vapor in the exhaust.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 382-399, October 22–25, 2013,
Abstract
View Paper
PDF
Solid particle erosion (SPE) harms steam and gas turbines, reducing efficiency and raising costs. The push for ultra-supercritical turbines reignited interest in SPE’s impact on high-temperature alloys. While the gas turbine industry researches methods to improve erosion resistance, a similar need exists for steam turbines. Existing room-temperature SPE test standards are insufficient for evaluating turbine materials. To address this gap, an EPRI program is developing an elevated-temperature SPE standard. This collaborative effort, involving researchers from multiple countries, has yielded a draft standard submitted to ASTM for approval. This presentation will detail the program, test conditions, and the draft standard’s development.
Proceedings Papers
AM-EPRI2004, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fourth International Conference, 303-309, October 25–28, 2004,
Abstract
View Paper
PDF
Trials have been performed to study the enhancement of the high temperature strength of alloy 617 by utilizing the solid solution strengthening effects of tungsten additions in the amounts of 3.30 weight % and 5.61 weight %. It could be successfully demonstrated that with the 5.61 wt.% tungsten addition, the resultant mechanical high temperature properties in the range of 700 to 750 °C were far superior to standard alloy 617. Also with regard to the oxidation resistance behavior, tungsten alloyed alloy 617 exhibited superior behavior to tungsten free standard alloy 617. Only in the hot corrosion simulated tests, the tungsten containing alloys showed increasing disadvantage with increased tungsten content. However in the real world under actual service conditions, this is of lesser relevance because the gas turbine components are and could be protected by TBC (thermal barrier coatings) and/or MCrAlY coatings. This paper describes the results of these developments. Very recent data generated on the aging response indicates drastic loss in impact values on the tungsten modified alloys after aging at 3000 hours and 5000 hours at 700°C and 750°C.