Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-3 of 3
Carbon steel
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 760-765, February 25–28, 2025,
Abstract
View Papertitled, Creep Strength and Microstructure in Welded Joints of ASME Grade 91 Type 1 and Type 2 Steels
View
PDF
for content titled, Creep Strength and Microstructure in Welded Joints of ASME Grade 91 Type 1 and Type 2 Steels
In this study, the creep strength of welded joints of Grade 91 Type 1 and Type 2 steels was evaluated. It was determined that impurity elements in the Type 1 steel reduced its creep strength. This reduction was attributed to an increase in the amount of residual carbides in the fine-grain heat-affected zone during welding.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 1024-1035, October 21–24, 2019,
Abstract
View Papertitled, Investigating the Electrical Resistance Technique for Structural Alloy Corrosion Monitoring within Supercritical CO 2 Power Cycles
View
PDF
for content titled, Investigating the Electrical Resistance Technique for Structural Alloy Corrosion Monitoring within Supercritical CO 2 Power Cycles
Structural alloy corrosion is a major concern for the design and operation of supercritical carbon dioxide (sCO 2 ) power cycles. Looking towards the future of sCO 2 system development, the ability to measure real-time alloy corrosion would be invaluable to informing operation and maintenance of these systems. Sandia has recently explored methods available for in-situ alloy corrosion monitoring. Electrical resistance (ER) was chosen for initial tests due the operational simplicity and commercial availability. A series of long duration (>1000 hours) experiments have recently been completed at a range of temperatures (400-700°C) using ER probes made from four important structural alloys (C1010 Carbon Steel, 410ss, 304L, 316L) being considered for sCO 2 systems. Results from these tests are presented, including correlations between the probe measured corrosion rate to that for witness coupons of the same alloys.
Proceedings Papers
AM-EPRI2010, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Sixth International Conference, 470-486, August 31–September 3, 2010,
Abstract
View Papertitled, High-Temperature Erosion Testing Standard and Round Robin Testing
View
PDF
for content titled, High-Temperature Erosion Testing Standard and Round Robin Testing
An international initiative is underway to develop the first standardized high-temperature solid particle erosion test method for steam turbine applications, addressing limitations of the current room-temperature ASTM G76 standard. Led by EPRI, this program involves laboratories from seven countries in a “Round Robin” testing program, aiming to establish consistent testing procedures for evaluating erosion resistance of materials used in Ultra Supercritical (USC) and advanced USC turbines. The proposed standard will use Type 410 stainless steel tested at 30 and 90-degree impingement angles with 50-micron alumina particles at 200 m/s, both at room temperature and 600°C, providing more relevant conditions for current and next-generation steam turbine applications.