Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-9 of 9
Inclusions
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 461-472, February 25–28, 2025,
Abstract
View Papertitled, Creep Rupture Strength and Ductility of Grade 92 Steel
View
PDF
for content titled, Creep Rupture Strength and Ductility of Grade 92 Steel
This study aims to elucidate the chemical compositions and microstructural factors that affect longterm creep rupture strength and creep rupture ductility using multiple heats of Gr.92 steel. Evaluating the reduction behavior in long-term creep rupture strength, we propose a relative creep rupture strength value, which is expressed as the logarithmic ratio of the estimated creep strength for each rupture time exceeding 10,000 hours, with 10,000 hours as the reference. Higher initial hardness correlates with greater pronounced strength reduction in the long-term regime. While smaller prior austenite grain sizes lead to greater reductions in creep rupture strength, this effect diminishes above 30 μm. However, no clear correlation was observed between Cr content and creep strength reduction in this study. Brittle creep ruptures with smooth test specimens were observed just below the extensometer ridge in the parallel section of test specimen, indicating notch weakening. Even in heats with excellent creep ductility, the amount of inclusions tended to be higher than in heats with lower creep ductility. Factors other than inclusions also seem to influence long-term creep ductility.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 1172-1182, February 25–28, 2025,
Abstract
View Papertitled, Assessment of a Grade 91 Steel Forging and Seamless Pipe Section After 141,000-Hours of Operation in a Superheat Outlet Header
View
PDF
for content titled, Assessment of a Grade 91 Steel Forging and Seamless Pipe Section After 141,000-Hours of Operation in a Superheat Outlet Header
In this work, two unique heats of 9Cr creep strength enhanced ferritic (CSEF) steels extracted from a retired superheat outlet header after 141,000 hours of service were evaluated. These two CSEF steels were a forging manufactured to SA-182 F91 (F91) reducer and a seamless pipe produced to SA-335 P91 (P91) pipe. Their creep deformation and fracture behavior were assessed using a lever arm creep frame integrated with in-situ high-temperature digital image correlation (DIC) system. Critical metallurgical and microstructure factors, including composition, service damage, grain matrix degradation, precipitates, and inclusions were quantitatively characterized to link the performance of the two service aged F91 and P91 CSEF steels. The creep test results show the F91 and P91 steels exhibit a large variation in creep strength and creep ductility. The F91 steel fractured at 572 hours while P91 steel fractured at 1,901 hours when subjected to a test condition of 650 °C and 100 MPa. The nominal creep strains at fracture were 12.5% (F91) and 14.5% (P91), respectively. The high-resolution DIC strain measurements reveal the local creep strain in F91 was about 50% while the local creep strain in P91 was >80%. The characterization results show that the F91 steel possessed pre-existing creep damage from its time in service, a higher fraction of inclusions, and a faster matrix grain coarsening rate. These features contribute to the observed reduction in performance for the F91 steel. The context for these findings, and the importance of metallurgical risk in an integrated life management approach will be emphasized.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 1195-1206, February 25–28, 2025,
Abstract
View Papertitled, The Effect of Post Weld Heat Treatment on the Microstructure and Creep Damage Susceptibility in Grade 92 Steel
View
PDF
for content titled, The Effect of Post Weld Heat Treatment on the Microstructure and Creep Damage Susceptibility in Grade 92 Steel
Creep strength enhanced ferritic (CSEF) steels have shown the potential for creep failure in the weld metal, heat affected zone (HAZ) or fusion line. Details for this behavior have been frequently linked to metallurgical risk factors present in each of these locations which may drive the evolution of damage and subsequent failure. This work is focused on three weld samples fabricated from a commercially sourced Grade 92 steel pipe section. These weld samples were extracted from the same welded section but were reported to exhibit failure in different time frames and failure locations (i.e., HAZ of parent, fusion-line, and weld metal). The only variables that contribute to this observed behavior are the post weld heat treatment (PWHT) cycle and the applied stress (all tests performed at 650 °C). In this work detailed microstructural analysis was undertaken to precisely define the locations of creep damage accumulation and relate them to microstructural features. As part of this an automated inclusion mapping process was developed to quantify the characteristics of the BN particles and other inclusions in the parent material of the samples. It was found that BN particles were only found in the sample that had been subjected to the subcritical PWHT, not those that had received a re-normalizing heat treatment. Such micron sized inclusions are a known potential nucleation site for creep cavities, and this is consistent with the observed failure location in the HAZ of the parent in the sample where these were present. In the absence of BN inclusions, the next most susceptible region to creep cavitation is the weld metal. This has an intrinsically high density of sub-micron sized spherical weld inclusions and this is where most of the creep damage was located, in all the renormalized samples.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 294-303, October 21–24, 2019,
Abstract
View Papertitled, A Standardized Approach for the Quantification of Microstructure in 9Cr Steels
View
PDF
for content titled, A Standardized Approach for the Quantification of Microstructure in 9Cr Steels
In order to understand the microstructural evolution during service that 9Cr steels experience it is important to be able to quantify key microstructural parameters that define the characteristics of the secondary phases (e.g. precipitated phases and inclusions) and the steel matrix. The average size of M 23 C 6 , Laves phase and MX particles in these materials have been reported in many studies, however comparability between these studies is compromised by variations in technique and different/incomplete reporting of procedure. This paper provides guidelines on what is required to accurately measure these parameters in a reproducible way, taking into account macro-scale chemical heterogeneities and the statistical number of particles required to make meaningful measurements. Although international standards do exist for inclusion analysis, these standards were not developed to measure the number per unit area of hard particles that can act as creep cavity nucleation sites. In this work a standardized approach for measuring inclusions from this perspective is proposed. In addition the associated need to understand the segregation characteristics of the material are described, which in addition to defining the area that needs to be analysed to measure the average number of inclusions per unit area, also allows the maximum number of inclusions per unit area to be determined, a parameter which is more likely to define the damage tolerance of the material.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 74-89, October 11–14, 2016,
Abstract
View Papertitled, Component Relevant Creep Damage in Tempered Martensitic 9 to 12 %Cr Steels
View
PDF
for content titled, Component Relevant Creep Damage in Tempered Martensitic 9 to 12 %Cr Steels
Creep brittle behaviour in tempered martensitic, creep strength enhanced ferritic (CSEF) steels is linked to the formation of micro voids. Details of the number of voids formed, and the tendency for reductions in creep strain to fracture are different for the different CSEF steels. However, it appears that the susceptibility for void nucleation is related to the presence of trace elements and hard non-metallic inclusions in the base steel. A key factor in determining whether the inclusions present will nucleate voids is the particle size. Thus, only inclusions of a sufficient size (the critical inclusion size is directly linked to the creep stress) will act directly as nucleation sites. This paper compares results from traditional uniaxial laboratory creep testing with data obtained under multiaxial conditions. The need to understand and quantify how metallurgical and structural factors interact to influence creep damage and cracking is discussed and the significant benefits available through the use of high quality steel making and fabrication procedures are highlighted. Details of component behaviour are considered as part of well-engineered, Damage Tolerant, design methods.
Proceedings Papers
Evaluation of 18Cr-9Ni-3Cu-Nb-N Austenitic Stainless Tubes for Ultra-Supercritical Power Boiler
Free
AM-EPRI2010, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Sixth International Conference, 140-152, August 31–September 3, 2010,
Abstract
View Papertitled, Evaluation of 18Cr-9Ni-3Cu-Nb-N Austenitic Stainless Tubes for Ultra-Supercritical Power Boiler
View
PDF
for content titled, Evaluation of 18Cr-9Ni-3Cu-Nb-N Austenitic Stainless Tubes for Ultra-Supercritical Power Boiler
Creep-resistant austenitic stainless steels are known to be the potential candidate materials for use as super- and re-heater tubes in ultra-super critical (USC) power plants. Among them, ASTM A213/A213M S30432, a novel 18-8 stainless steel (18Cr- 9Ni-3Cu-Nb-N), has attracted considerable attention from electric industry due to its combined lower cost and more excellent performance in contrast to traditional TP347H steel. More than 10 years of service in Japan laid a solid foundation for the steel being selectable USC boiler materials. Steels of S30432 have been recently developed in China during the past few years. This paper presents the evaluation results of S30432 tubes manufactured by four steel plants in China as well as Sumitomo super304H tubes for comparison. A detailed microstructural analysis of the tubes has been performed by using optical and electron microscope, and mechanical properties of the tubes have been evaluated using hardness testing as well as tensile testing up to 700°C. It was found that the impurity elements, nonmetallic inclusions and grain size of the S30432 tubes were well controlled. TEM observation revealed the microstructural changes for a selected batch of S30432 specimens in condition of hot rolled material, as-extruded tube, solution treated tube and 650°C/1000h aged tube. Most attention was paid to the morphology and distribution of precipitates in the microstructure which should be responsible for the enhanced performance of the steel. Although the hardness of all the evaluated tubes was measured to be similar, they showed more or less differences in tensile properties between each other. Creep rupture testing is still in progress, and the steel might exhibit excellent long-term creep rupture strength at 650°C as was predicted from the currently available testing results.
Proceedings Papers
AM-EPRI2004, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fourth International Conference, 720-732, October 25–28, 2004,
Abstract
View Papertitled, Revealing Creep Associated and Industrial Flaws in Operating High Energy Piping by Quantitative Acoustic Emission Method
View
PDF
for content titled, Revealing Creep Associated and Industrial Flaws in Operating High Energy Piping by Quantitative Acoustic Emission Method
High-pressure and high-temperature piping in fossil power plants suffer from unexpected and rarely predictable failures. To prevent failures and ensure operational safety, a Quantitative Acoustic Emission (QAE) non-destructive inspection (NDI) method was developed for revealing, identifying, and assessing flaws in equipment operating under strong background noise. This method enables overall piping inspection during normal operation, locating suspected zones with developing low J-integral flaws, identifying flaw types and evaluating danger levels based on J-integral values, and detecting defective components prior to shutdown. Combining continuous and burst acoustic emission as an information tool, the QAE NDI revealed, identified, and assessed significant flaws like creep, micro-cracks, pore/inclusion systems, plastic deformation, and micro-cracking in over 50 operating high-energy piping systems. Findings were independently verified by various NDI techniques, including time of flight diffraction, focused array transducers, magnetic particles, ultrasonic testing, X-ray, replication, and metallurgical investigations.
Proceedings Papers
AM-EPRI2004, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fourth International Conference, 733-747, October 25–28, 2004,
Abstract
View Papertitled, Why it is Possible to Reveal, Recognize, and Assess Creep Stage in Operating High Energy Piping by Quantitative Acoustic Emission Method
View
PDF
for content titled, Why it is Possible to Reveal, Recognize, and Assess Creep Stage in Operating High Energy Piping by Quantitative Acoustic Emission Method
Theoretical and experimental investigations, including fracture tests, acoustic emission (AE) studies, fractography, micro-sclerometric analyses, and spectral/chemical analyses of specimens, have established the possibility of revealing, recognizing in-service acquired, age-related, and prefabricated flaws based solely on AE data. Results show a linear dependence between AE and mechanical deformation power of steel specimens in original and creep stage 3a-3b conditions, decreasing fracture load and J1c value for aging steel, creep processes at stage 3a-3b having J-integral value below 0.05J1c, possibility of assessing and distinguishing different flaw development stages with ≥87% accuracy, revealing zones of tough and brittle fracture, and recognizing inclusions/pre-fabricated flaws and assessing individual/interacting flaws. Experiments confirmed the absence of the Kaiser effect under repeated loading of flawed specimens and demonstrated using AE for defect revelation. Analysis showed that creep-associated AE is mainly continuous, with repeated loading decreasing burst AE contribution during plastic deformation development.
Proceedings Papers
AM-EPRI2004, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fourth International Conference, 1270-1279, October 25–28, 2004,
Abstract
View Papertitled, Coarse Size BN Type Inclusions formed in Boron Bearing High Cr Ferritic Heat Resistant Steel
View
PDF
for content titled, Coarse Size BN Type Inclusions formed in Boron Bearing High Cr Ferritic Heat Resistant Steel
This study investigates the behavior of boron nitride (BN) inclusions in high-chromium ferritic heat-resistant steels like P92 and P122. Boron is added to improve creep resistance, but its role is not fully understood. Here, the formation and dissolution of BN inclusions during high-temperature heat treatment were examined. Microscopic analysis revealed coarse BN inclusions (2-5 μm) alongside smaller alumina inclusions. Annealing experiments showed that these BN inclusions only dissolved at temperatures exceeding 1200°C, suggesting they form during casting or forging processes below 1150°C. Chemical analysis identified a critical boron and nitrogen concentration threshold (below 0.001% B and 0.015% N) for BN inclusion formation.