Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-14 of 14
High-temperature corrosion
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 669-677, February 25–28, 2025,
Abstract
View Papertitled, High-Performance Corrosion and Erosion Resistance of an Amorphous Iron-Based Alloy Coating Exposed to Molten FLiNaK Salt Nuclear Reactor Coolant at 700 °C
View
PDF
for content titled, High-Performance Corrosion and Erosion Resistance of an Amorphous Iron-Based Alloy Coating Exposed to Molten FLiNaK Salt Nuclear Reactor Coolant at 700 °C
This presentation compares the corrosion resistance of uncoated Haynes 230 and SS316HS substrates to the same substrates coated with a Fe-based amorphous alloy. The substrates were exposed to highly corrosive media, FLiNaK, for 120 hours at 700 °C. The findings indicate that the thermal spray amorphous alloy coating provided superior corrosion resistance within the coatings while protecting the substrates against the aggressive environment. As a result, the new amorphous metal coating improved the substrate's lifespan by providing better protection against high-temperature corrosion, paving the way for a more efficient and cost-effective future in various industrial applications.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 897-908, February 25–28, 2025,
Abstract
View Papertitled, Assessing the Impact of Molten Halide Salts on Creep of Structural Alloys at 650°-750°C
View
PDF
for content titled, Assessing the Impact of Molten Halide Salts on Creep of Structural Alloys at 650°-750°C
There is a critical lack of data on the mechanical behavior of candidate structural materials for advanced nuclear reactors under molten halide salt environments. Limited legacy data from the molten salt reactor experiment (MSRE) program showed a significant reduction in creep rupture strength of a Ni-base alloy in molten fluoride salt. With ongoing efforts to commercialize different molten salt reactor concepts, the industry can considerably benefit from quantitative information on the impact of molten halide salts on the engineering properties such as creep and fatigue strength of materials of interest. The present work aims to assess the role of molten salt corrosion on the creep behavior of three alloys 316H, 617 and 282 at 650-816 °C. Creep tests were conducted in fluoride (FLiNaK) and chloride (NaCl-MgCl 2 ) salts. Initial results from the ongoing testing will be presented which suggest that the molten salt environment caused a 25-50% reduction in creep rupture lifetime compared to air exposures. Physics-based corrosion and creep models were employed to gain some insights into the potential degradation mechanisms.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 1126-1137, February 25–28, 2025,
Abstract
View Papertitled, Investigation of Novel Nickel-Based Alloys for High Temperature Molten Chloride Salt Reactor Structural Applications
View
PDF
for content titled, Investigation of Novel Nickel-Based Alloys for High Temperature Molten Chloride Salt Reactor Structural Applications
An attempt is being made to develop novel Ni-Mo-W-Cr-Al-X alloys with ICME approach with critical experimental/simulations and processing/microstructural characterization/property evaluation and performance testing has been adopted. In this work, based on thermodynamic modeling five alloy compositions with varying Mo/W and two alloys with high tungsten modified with the addition of Al or Ti were selected and prepared. The newly developed alloys were evaluated for their response to thermal aging in the temperature range of 700 to 850 °C and corrosion in the KCl-NaCl-MgCl 2 salt under suitable conditions. Thermally aged and post-corrosion test samples were characterized to ascertain phase transformations, microstructural changes and corrosion mechanisms. Al/Ti modified alloys showed significant change in hardness after 400 hours aging at 750°C, which was found to be due to the presence of fine γ’/γ” precipitates along with plate-shaped W/Mo-rich particles. These alloys show comparable molten salt corrosion resistance as commercial alloys at 750°C for 200-hour exposures. The good corrosion behavior of these alloys may be attributed to the formation of a protective multicomponent Al-or Ti-enriched oxide as well as the unique microstructure.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 771-782, October 21–24, 2019,
Abstract
View Papertitled, Modelling Hot Corrosion Damage in Industrial Gas Turbines
View
PDF
for content titled, Modelling Hot Corrosion Damage in Industrial Gas Turbines
Key components within gas turbines, such as the blades, can be susceptible to a range of degradation mechanisms, including hot corrosion. Hot corrosion type mechanisms describe a sequence of events that include the growth and fluxing of protective oxide scales followed by the degradation of the underlying coating/alloy; this can significantly reduce component lifetimes. To better understand the progress of this type of damage mechanism, a model of hot corrosion progression with both time and corrosive deposit flux is presented for IN738LC and compared to experimental test data collected at 700 °C for four different deposit fluxes. One approach to the interpolation of model parameters between these four fluxes is illustrated. Of particular importance is that the model accounts for the statistical variation in metal loss though the use of Weibull statistics.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 783-794, October 21–24, 2019,
Abstract
View Papertitled, Component Level Hot Corrosion and Deposit Modeling for Large Gas Turbines
View
PDF
for content titled, Component Level Hot Corrosion and Deposit Modeling for Large Gas Turbines
Modern gas turbines are operated with fuels that are very clean and within the allowances permitted by fuel specifications. However, the fuels that are being considered contain vanadium, sulfur, sodium and calcium species that could significantly contribute to the degradation of components in hot gas flow path. The main potential risk of material degradation from these fuels is “hot corrosion” due to the contaminants listed above combined with alkali metal salts from ambient air. Depending on the temperature regime hot corrosion can damage both TBC coatings and bond coat/substrate materials. Deposit-induced or hot corrosion has been defined as “accelerated oxidation of materials at elevated temperatures induced by a thin film of fused salt deposit”. For the initiation of hot corrosion, deposition of the corrosive species, e.g. vanadates or sulfates, is necessary. In addition to the thermodynamic stability, the condensation of the corrosive species on the blade/vane material is necessary to first initiate and then propagate hot corrosion. Operating temperatures and pressures both influence the hot corrosion damage. The temperature ranges over which the hot corrosion occurs depend strongly on following three factors: deposit chemistry, gas constituents and metal alloy (or bond coating/thermal barrier coating) composition. This paper reports the activities involved in establishing modeling and simulation followed by testing/characterization methodologies in relevant environments to understand the degradation mechanisms essential to assess the localized risk for fuel flexible operation. An assessment of component operating conditions and gas compositions throughout the hot gas paths of the gas turbines, along with statistical materials performance evaluations of metal losses for particular materials and exposure conditions, are being combined to develop and validate life prediction methods to assess component integrity and deposition/oxidation/corrosion kinetics.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 66-73, October 11–14, 2016,
Abstract
View Papertitled, Some Problems in Metal Material Service of Fossil Power Units in Mainland China
View
PDF
for content titled, Some Problems in Metal Material Service of Fossil Power Units in Mainland China
Along with rapid development of thermal power industry in mainland China, problems in metal materials of fossil power units also change quickly. Through efforts, problems such as bursting due to steam side oxide scale exfoliation and blocking of boiler tubes, and finned tube weld cracking of low alloy steel water wall have been solved basically or greatly alleviated. However, with rapid promotion of capacity and parameters of fossil power units, some problems still occur occasionally or have not been properly solved, such as weld cracks of larger-dimension thick-wall components, and water wall high temperature corrosion after low-nitrogen combustion retrofitting.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 310-317, October 11–14, 2016,
Abstract
View Papertitled, UNS S31035/1.4990 - A Newly Developed High Strength Heat Resistant Austenitic Stainless Steel for Advanced High Efficiency Coal Fired Power Plants
View
PDF
for content titled, UNS S31035/1.4990 - A Newly Developed High Strength Heat Resistant Austenitic Stainless Steel for Advanced High Efficiency Coal Fired Power Plants
Energy requirements and environmental concerns have promoted a development in higher-efficiency coal fired power technologies. Advanced ultra-super critical power plant with an efficiency of higher than 50% is the target in the near future. The materials to be used due to the tougher environments become therefore critical issues. This paper provides a review on a newly developed advanced high strength heat resistant austenitic stainless steel, Sandvik Sanicro 25, for this purpose. The material shows good resistance to steam oxidation and flue gas corrosion, and has higher creep rupture strength than any other austenitic stainless steels available today, and has recently obtained two AMSE code cases. This makes it an interesting option in higher pressures/temperature applications. In this paper, the material development, structure stability, creep strength, steam oxidation and hot corrosion behaviors, fabricability and weldability of this alloy have been discussed. The conclusion is that the Sanicro 25 is a potential candidate for superheaters and reheaters in higher-efficiency coal fired boilers i.e. for applications seeing up to 700°C material temperature.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 924-930, October 11–14, 2016,
Abstract
View Papertitled, Supercritical Water Oxidation and Creep Behaviour of Boiler Tube Materials
View
PDF
for content titled, Supercritical Water Oxidation and Creep Behaviour of Boiler Tube Materials
High efficiency in power generation is not only desirable because of economical reasons but also for enhanced environmental performance meaning reduced quantity of forming ash and emissions. In modern medium to large size plants, improvements require supercritical steam values. Furthermore, in future there will be an increasing share of renewables, such as wind and solar power, which will enhance the fluctuation of supply with the consequence that other power sources will have to compensate by operating in a more demanding cyclic or ramping mode. The next generation plant will need to operate at higher temperatures and pressure cycles coupled with demanding hot corrosion and oxidation environments. Such an operation will significantly influence the performance of materials used for boilers and heat exchanger components by accelerating oxidation rates and lowering mechanical properties like creep resistance. The paper discusses the oxidation behaviour of San25, 800H and alloy 263 in supercritical water at temperatures 650 and 700 °C at 250 bar, and compares the changes of mechanical properties of materials at these temperatures.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 1126-1137, October 11–14, 2016,
Abstract
View Papertitled, Long-Term Material Tests in Liquid Molten Salts
View
PDF
for content titled, Long-Term Material Tests in Liquid Molten Salts
Solar salts are used as an energy storage media and heat transfer fluid in power plants. The salts can cause significant corrosion to various steels that are in contact with the salt. Static corrosion tests performed with different steels show, that the corrosive attack by industrial grade salt melts is more severe than by defined grade salt melts and the sample corrosion is faster (i.e. the weight gain is larger) for higher temperatures. Slow strain rate (SSR) tests in salt are difficult to conduct due to the corrosive attack of the salt also on the test setup. The SSRT setup in salt could be realized and tests could be conducted successfully. No clear evidence for an accelerated failure of samples tested in salt compared to samples tested in air could be found on Alloy 347 Nb. Comparative low cycle fatigue (LCF) tests at air and in molten salt atmosphere were successfully performed and showed similar results on tubes out of Sanicro 25. No evidence of accelerated crack growth in molten salt could be found.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 1388-1396, October 22–25, 2013,
Abstract
View Papertitled, Corrosion Characteristics of Alloy622 Weld Overlay for Waterwall Tubes in Coal Fired Boilers
View
PDF
for content titled, Corrosion Characteristics of Alloy622 Weld Overlay for Waterwall Tubes in Coal Fired Boilers
Recently, boiler waterwall tube damage such as fireside corrosion and circumferential cracking in low NOx environments has become a serious issue in Japan, despite the typical use of relatively lower sulfur content coal is typically being used than in US. Thermal spray coating has been the most popular method for tube protection in Japan, and thermal spray coated tubes have been used for this purpose. However, extensive damage to thermal spray coating tubes from cracking and exfoliation has been recently experienced. It has been reported that the thermal fluctuations occurring due to operational changes create alternating stress, leading to cracking and exfoliation of the thermal sprayed thin coating. Corrosion-resistant weld overlays, such as Type 309 stainless steel (in sub-critical boilers) and Alloy 622 (in sub-critical and super-critical boilers), are commonly used to protect boiler tubes from corrosion in low NOx coal fired boilers in U.S. In order to develop a fundamental understanding of the high temperature corrosive behavior of Alloy 622 weld overlay, gaseous corrosion testing and certain mechanical tests for consideration of long-term aging were undertaken. After four years of service in the low NOx combustion environment of a coal fired supercritical boiler, field tests on Alloy 622 weld overlay panels are in continuation. This paper describes the field test behavior of Alloy 622 weld overlay panels installed in a Japanese supercritical boiler, the laboratory results of weight loss corrosion testing, and the results of cyclic bend tests with overlay welded tubes related to aging.
Proceedings Papers
AM-EPRI2007, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fifth International Conference, 320-337, October 3–5, 2007,
Abstract
View Papertitled, Alloy 33: Update on Field Experience in Water Walls and Superheaters
View
PDF
for content titled, Alloy 33: Update on Field Experience in Water Walls and Superheaters
Alloy 33 is a weld overlay material that has generated a lot of interest in the fossil boiler industry. The high chromium content of Alloy 33 has been shown to provide excellent corrosion protection in both waterwall and superheater/reheater tube applications. For waterwall applications, the corrosion resistance has been demonstrated in both laboratory and field tests conducted over the last 5 years. In addition to corrosion resistance, the Alloy 33 has also shown that it is also resistant to cracking (although no material is 100% immune). In the superheater/reheater, the use of spiral clad weld overlay tubes is able to provide resistance to excellent coal ash corrosion. Laboratory and field tests have shown Alloy 33 to have among the best corrosion resistance of all materials studied. The application of Alloy 33 is also easier than other more highly alloyed materials (such as FM-72) and is less expensive. As a result of these favorable experiences, Alloy 33 is now being used commercially to weld overlay both waterwall and superheater/reheater tubes on fossil boilers.
Proceedings Papers
AM-EPRI2007, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fifth International Conference, 488-506, October 3–5, 2007,
Abstract
View Papertitled, Effects of Fuel Composition and Temperature on Fireside Corrosion Resistance of Advanced Materials in Ultra-Supercritical Coal-Fired Power Plants
View
PDF
for content titled, Effects of Fuel Composition and Temperature on Fireside Corrosion Resistance of Advanced Materials in Ultra-Supercritical Coal-Fired Power Plants
The U.S. Department of Energy (DOE) and the Ohio Coal Development Office (OCDO) are co-sponsoring a multi-year project managed by Energy Industries of Ohio (EIO) to evaluate materials for ultra-supercritical (USC) coal-fired boilers. USC technology improves cycle efficiency and reduces CO 2 and pollutant emissions. With turbine throttle steam conditions reaching 732°C (1350°F) at 35 MPa (5000 psi), current boiler materials, which operate below 600°C (1112°F), lack the necessary high-temperature strength and corrosion resistance. This study focuses on the fireside corrosion resistance of candidate materials through field testing. Evaluated materials include ferritic steels (SAVE12, P92, HCM12A), austenitic stainless steels (Super304H, 347HFG, HR3C), and high-nickel alloys (Haynes 230, CCA617, Inconel 740, HR6W), along with protective coatings (weld overlays, diffusion coatings, laser claddings). Prior laboratory tests assessed corrosion under synthesized coal-ash and flue gas conditions for three North American coal types (Eastern bituminous, Midwestern high-sulfur bituminous, and Western sub-bituminous), with temperatures ranging from 455°C (850°F) to 870°C (1600°F). Promising materials were installed on retractable corrosion probes in three utility boilers burning different coal types. The probes maintained metal temperatures between 650°C (1200°F) and 870°C (1600°F). This paper presents new fireside corrosion probe results after approximately one year of exposure for Midwestern and Western coal types.
Proceedings Papers
AM-EPRI2004, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fourth International Conference, 35-50, October 25–28, 2004,
Abstract
View Papertitled, Alloy Development and Material Issues with Increasing Steam Temperature
View
PDF
for content titled, Alloy Development and Material Issues with Increasing Steam Temperature
In the later half of the last century great progress in alloy development for power applications was seen to improve thermal efficiency with increasing steam temperature. Meanwhile, many material-related troubles have been experienced due to rising temperature and uncertainty in the properties of fabricated metal. For further improvement in the thermal efficiency of fossil-fired power plants with ultra supercritical steam parameter conditions aiming at temperatures above 700°C, alloy development concepts and material issues with increasing steam temperature must be reviewed and discussed. In this paper new findings in the areas of alloy developments, creep failure in base metal and weldments, thermal fatigue failure and steam oxidation/hot corrosion are presented and discussed, as well as the economical aspect of material development, which is essential to realize unprecedented ultra supercritical steam conditions.
Proceedings Papers
AM-EPRI2004, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fourth International Conference, 762-772, October 25–28, 2004,
Abstract
View Papertitled, Electrochemical Corrosion Rate Probes for High-Temperature Energy Applications
View
PDF
for content titled, Electrochemical Corrosion Rate Probes for High-Temperature Energy Applications
High-temperature corrosion occurs in different sections of energy production plants due to a number of factors: ash deposition, coal impurities, thermal gradients, and low NO x conditions, among others. High-temperature electrochemical corrosion rate (ECR) probes are rarely used at the present time, but if they were more fully understood, corrosion could become a process variable at the control of plant operators. Research is being conducted to understand the effects of probe composition, ash composition, environment chemistry, and measurement technique on the accuracy, response, and longevity of electrochemical corrosion rate probes. The primary goal is to understand when ECR probes accurately measure corrosion rates and when they are simply qualitative indicators of changes in the corrosion processes. Research to date has shown that ECR probe corrosion rates and corrosion rates from mass loss coupons agree within a factor of 2. This good agreement was found to depend on the composition of the sensors, with the best results coming from more highly alloyed materials such as 316L stainless steel and poorer results from carbon steel sensors. Factors being considered to help explain the good or poor agreement between mass loss and ECR probe corrosion rates are: values selected for the Stern-Geary constant, the effect of internal corrosion, and the presence of conductive corrosion scales and ash deposits.