Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-7 of 7
Fireside corrosion
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 1014-1023, October 21–24, 2019,
Abstract
View Paper
PDF
The combustion of coal and biomass fuels in power plants generates deposits on the surfaces of superheater / reheater tubes that can lead to fireside corrosion. This type of materials degradation can limit the lives of such tubes in the long term, and better methods are needed to produce predictive models for such damage. This paper reports on four different approaches that are being investigated to tackle the challenge of modelling fireside corrosion damage on superheaters / reheaters: (a) CFD models to predict deposition onto tube surfaces; (b) generation of a database of available fireside corrosion data; (c) development of mechanistic and statistically based models of fireside corrosion from laboratory exposures and dimensional metrology; (d) statistical analysis of plant derived fireside corrosion datasets using multi-variable statistical techniques, such as Partial Least Squares Regression (PLSR). An improved understanding of the factors that influence fireside corrosion is resulting from the use of a combination of these different approaches to develop a suite of models for fireside corrosion damage.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 912-923, October 11–14, 2016,
Abstract
View Paper
PDF
The Advanced Ultrasupercritical (A-USC) power plants are aimed to operate at steam inlet temperatures greater than 700°C; consequently, a complete materials overhaul is needed for the next-generation power plants. HAYNES 282, a gamma-prime strengthened alloy, is among the leading candidates because of its unique combination of properties, superior creep and LCF strength, fabricability and thermal stability. It is currently being evaluated in wrought and cast forms for A-USC turbine rotors, casings, boiler tubings, header, and valves. The candidate materials for A-USC applications not only require oxidation resistance for steam cycles but fireside corrosion resistance to coal ash is also of an extreme importance. In order to study the effect of both environments on the performance of 282 alloy, the alloy was exposed for extended periods in various oxidizing environments, such as air, air plus water vapor (10%), and 17bar steam up to 900°C. The fireside corrosion resistance of 282 alloy was evaluated at 700°C in synthetic coal ash and at 843°C in alkali salt deposits in a controlled gaseous environment.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 832-846, October 22–25, 2013,
Abstract
View Paper
PDF
Nickel-based alloys and stainless steel Super304H, along with various coatings, are undergoing testing in a steam loop at Alabama Power’s Plant Barry. These materials are being evaluated for use in advanced ultra-supercritical (A-USC) fossil-fired power plants at temperatures ranging from 538°C to 815°C. The loop has been operational for over 18 months, with the alloys exceeding 6,300 hours above 538°C. An additional 7,000 hours at high temperatures are planned before the loop’s removal in 2014. Initial inspections show minimal material corrosion, suggesting their suitability for A-USC applications. This paper details the loop’s design, materials, manufacturing, operation, and inspection findings. Additionally, it describes a methodology for predicting steam-side oxidation and fireside corrosion rates and highlights the significance of this testing for A-USC development and commercialization.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 881-891, October 22–25, 2013,
Abstract
View Paper
PDF
Oxyfuel combustion is considered as one of the most promising technologies to facilitate CO 2 capture from flue gases. In oxyfuel combustion, the fuel is burned in a mixture of oxygen and recirculated flue gas. Flue gas recirculation increases the levels of fireside CO 2 , SO 2 , Cl and moisture, and thus promotes fouling and corrosion. In this paper the corrosion performance of two superheater austenitic stainless steels (UNS S34710 and S31035) and one Ni base alloy (UNS N06617) has been determined in laboratory tests under simulated oxyfuel conditions with and without a synthetic carbonate based deposits (CaCO 3 - 15 wt% CaSO 4 , CaCO 3 - 14wt% CaSO 4 - 1 KCl) at 650 and 720°C up to 1000 hours. No carburization of the metal substrate was observed after exposure to simulated oxyfuel gas atmospheres without deposit, although some carbon enrichment was detected near the oxide metal interface. At 720°C a very thin oxide formed on all alloy surfaces while the weight changes were negative. This negative weight change observed is due to chromium evaporation in the moist testing condition. At the presence of deposits, corrosion accelerated and considerable metal loss of austenitic alloys was observed at 720°C. In addition, clear carburization of austenitic steel UNS S34710 occurred.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 892-902, October 22–25, 2013,
Abstract
View Paper
PDF
Using oxygen, rather than air, in coal-fired boilers has been studied for several years as a strategy to reduce NOx and concentrate CO 2 for capture. In combination with flue gas recirculation, higher levels of CO 2 are expected but increased H 2 O and SO 2 levels also may occur. In order to understand the role of substrate composition on corrosion, a combination of commercial and model alloys were investigated with synthetic coal ash and gas compositions simulating air- and oxyfiring environments. Exposure temperatures ranged from 600°-800°C to cover current operating temperatures up to advanced ultrasupercritical conditions. Using 500h exposures, no consistent negative effect was found for switching to the oxy-firing environment with the same synthetic ash. For model Fe-Cr alloys, 30%Cr was needed to form a thin protective reaction product across this temperature range. Among the commercial stainless steels, 310-type stainless steel showed low reaction rates with the maximum attack at 650°C. At higher temperatures, the depth of attack on Fe-base type 310 stainless steel was less than for Ni-base alloy 740. Initially, this difference was attributed to the Al and Ti additions in alloy 740. However, cast and hot rolled model Ni-18Cr and -22Cr alloys with various Al and Ti additions showed decreased metal loss with increasing Al and Ti additions in the oxy-firing environment at 700° and 800°C. As expected, metal loss was very sensitive to Cr content. A second set of model alloys also examined the effect of Co and Mo.
Proceedings Papers
AM-EPRI2004, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fourth International Conference, 310-322, October 25–28, 2004,
Abstract
View Paper
PDF
The “Coal Ash Corrosion Resistant Materials Testing Program” by The Babcock & Wilcox Company (B&W), the U.S. Department of Energy (DOE), and the Ohio Coal Development Office (OCDO) at Reliant Energy's Niles plant provides full-scale in-situ testing of advanced boiler superheater materials to address fireside corrosion, a key issue for improving efficiency in new coal-fired plants and service life in existing ones. In 1998, B&W developed a system with three identical sections containing multiple segments of twelve different materials from contributors like Oak Ridge National Laboratory (ORNL), cooled by reheat steam and installed in 1999 above the furnace entrance in the Niles Plant 110 MWe Unit #1 firing high-sulfur Ohio coal to test materials at advanced supercritical steam temperatures (1100°F+) in corrosive conditions. The first section was evaluated after 29 months in 2001, the second in 2003, and the final section is expected for removal in 2005. This paper outlines the program, test system, and materials, and it presents the evaluation results for the first two sections.
Proceedings Papers
AM-EPRI2004, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fourth International Conference, 323-336, October 25–28, 2004,
Abstract
View Paper
PDF
A consortium which includes Energy Industries of Ohio, the Electric Power Research Institute, Inc., and four major US boiler manufacturers (the Babcock & Wilcox Company, Riley Power, Foster Wheeler, and Alstom Power) is conducting a 5-year materials development program to advance the technology in coal-fired power generation. As part of this development effort, new high temperature, corrosion resistant alloys must be evaluated and qualified for dependable operation in a corrosive coal-fired environment to produce steam for Ultra Supercritical (USC) cycle operation up to 760°C (1400°F) and 35 MPa (5000 psi.) To evaluate the fireside corrosion resistance of candidate materials for USC power generation, two superheater test loops comprised of seven different advanced alloys were designed and fabricated by the Babcock and Wilcox Company (B&W) in Barberton, Ohio. These loops were installed at the Reliant Energy power plant located in Niles, OH, and testing of these loops was initiated in December, 2003. Following a minimum of 18 months of testing, the loops will be removed for metallurgical examination and assessment by B&W. This paper describes some of the considerations in designing, fabricating, and installing the two USC test loops, as well as the methodology for monitoring their performance during operation.