Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Date
Availability
1-20 of 26
Stainless Steels
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 628-639, October 21–24, 2019,
Abstract
View Paper
PDF
A new alloy design concept for creep- and corrosion-resistant, fully ferritic alloys was proposed for high-temperature structural applications in current/future fossil-fired power plants. The alloys, based on the Fe-30Cr-3Al (in weight percent) system with minor alloying additions of Nb, W, Si, Zr and/or Y, were designed for corrosion resistance though high Cr content, steam oxidation resistance through alumina-scale formation, and high-temperature creep performance through fine particle dispersion of Fe 2 (Nb,W)-type Laves phase in the BCC-Fe matrix. Theses alloys are targeted for use in harsh environments such as combustion and/or steam containing atmospheres at 700°C or greater. The alloys, consisting of Fe-30Cr-3Al-1Nb-6W with minor alloying additions, exhibited a successful combination of oxidation, corrosion, and creep resistances comparable or superior to those of commercially available heat resistant austenitic stainless steels. An optimized thermo-mechanical treatment combined with selected minor alloying additions resulted in a refined grain structure with high thermal stability even at 1200°C, which improved room-temperature ductility without sacrificing the creep performance. The mechanism of grain refinement in the alloy system is discussed.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 640-646, October 21–24, 2019,
Abstract
View Paper
PDF
Materials with a higher creep strength and sensitization resistance superior to those of 347AP are required in complex refinery such as delayed coker. To optimize material designing, the effect of B addition on the Z phase-strengthened steels has been investigated. B addition significantly improved the creep strength of steel containing Nb despite the absence of M 23 C 6 , whereas the creep strength of steel without Nb showed only a slight change with B addition. The size of Z phase was smaller in the Nb-containing steel with B content than that in B-free steel. It was suggested that the refinement of Z phase contributed to the creep strengthening by B addition in steels containing Nb.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 647-654, October 21–24, 2019,
Abstract
View Paper
PDF
Sanicro 25 material is approved for use in pressure vessels and boilers according ASME code case 2752, 2753 and VdTUV blatt 555. It shows higher creep rupture strength than any other austenitic stainless steels available today. It is a material for superheater and reheaters, enabling higher steam parameters of up to about 650 °C steam (ie about max 700 °C metal) without the need for expensive nickel based alloys. The aim of the present study is the investigation of the steam oxidation resistance of the Sanicro 25. The long term test was conducted in the temperature range 600 -750 °C up to 20 000 hours. The morphology of the oxide scale and the microstructure of the bulk material were investigated. In addition, the effect of surface finish and pressure on the steam oxidation were also studied.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 655-664, October 21–24, 2019,
Abstract
View Paper
PDF
18Cr-9Ni-3Cu-Nb-N steel is widely used for heat exchanger tubes such as super-heaters and reheaters of ultra-super critical power generation boilers. In this study, long-term creep rupture tests were carried out on 18Cr-9Ni-3Cu-Nb-N seamless steel tubes of 7 heat materials, and the specimens of 2 heat materials with different creep rupture strengths were observed by ultra-low voltage scanning electron microscope after creep rupture tests. The results of the investigation of the creep rupture specimens and the coverage ratios of M 23 C 6 on grain boundary were different. The cause of this was estimated to be the difference in B content between the 2 heat materials. Creep rupture tests with different final ST temperatures were also carried out using the same heat material, and it was revealed that the higher final ST temperature, the higher the creep rupture strength. As the final ST temperature is higher, the amount of Nb(C, N) solid solution in the matrix increases, and the amount of precipitation of NbCrN and M 23 C 6 increases during creep, therefore it is assumed that the creep rupture strength increases.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 665-672, October 21–24, 2019,
Abstract
View Paper
PDF
Creep properties and microstructural changes of 25Cr-20Ni-Nb-N steel (KA-SUS310J1TB) were investigated. Creep tests were performed under 20MPa to 380MPa at 600°C to 800°C. Time to rupture was from 53.5h to 23950h. At 650°C or higher, creep strength degraded in the long-term. Rupture elongation and reduction of area decreased with increasing time to rupture at 600°C to 800°C. The reduction of area was lower than 12% after creep rupture for more than 10000h. Creep voids and cracks were observed on grain boundaries in creep ruptured samples. The hardness of head portion of creep ruptured samples increased with increasing time to rupture at 600°C to 800°C. The hardness of gauge portion of creep ruptured samples was higher than that of as received sample. However, the hardness of gauge portion does not strongly depend on time to rupture. No precipitates were observed in as received sample. On the other hand, a large number of precipitates were confirmed after creep rupture at 600°C to 800°C. M 23 C 6 , sigma phase, eta nitride and Z phase were detected in creep ruptured samples. The precipitation was confirmed on grain boundaries after short-term creep. The precipitates were also formed inside grains after long-term creep. It was confirmed by optical microscope that the grain boundary seemed to have band-like structure after short-term creep exposure. The Cr depletion zone was detected around grain boundary after short-term creep exposure. The Cr depletion zone can be visible when Cr rich precipitates such as M 23 C 6 and sigma phase are formed on grain boundaries. However, the bandlike structure was not observed after long-term creep exposure because the Cr depletion zone became unclear after long-term creep exposure. Creep voids were formed on grain boundaries and at the interface between precipitates such as M 23 C 6 and sigma phase and matrix.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 673-684, October 21–24, 2019,
Abstract
View Paper
PDF
The long-term performance of superheater super 304h tube during the normal service of an ultra-supercritical 1000mw thermal power unit was tracked and analyzed, and the metallographic structure and performance of the original tube sample and tubes after 23,400h, 56,000h, 64,000 h, 70,000 h and 80,000 h service were tested. The results show that the tensile strength, yield strength and post-break elongation meet the requirements of ASME SA213 S30432 after long-term service, but the impact toughness decreases significantly. The metallographic organization is composed of the original complete austenite structure and gradually changes to the austenite + twin + second phase precipitates. With the extension of time, the number of second phases of coarseness in the crystal and the crystal boundary increases, and the degree of chain distribution increases. The precipitation phase on the grain boundary is dominated by M 23 C 6 , and there are several mx phases dominated by NbC and densely distributed copper phases in the crystal. The service environment produces a high magnetic equivalent and magnetic induction of the material, the reason is that there are strips of martensite on both sides of the grain boundary, and the number of martensite increases with the length of service.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 685-693, October 21–24, 2019,
Abstract
View Paper
PDF
The fall-off of oxide scale with poor adhesion inside superheater/reheater tubes in boilers for (ultra) supercritical power unit is the main cause of accidents such as superheater/reheater blockage, tube explosion and solid particle erosion in the steam turbine which cause serious economic losses. However, there is still no method for testing and assessing the adhesion of oxide scale inside the tube. A method for testing the adhesion of corrosion products in tubes by spiral lines is proposed in this paper, and the accuracy of adhesion evaluation is improved by adopting the image recognition method.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 694-702, October 21–24, 2019,
Abstract
View Paper
PDF
The spalling of oxide scales at the steam side of superheater and reheater of ultra-supercritical unit is increasingly serious, which threatens the safe and economic operation of the boiler. However, no effective monitoring method is proposed to provide an on-line real-time detection on the spalling of oxide scales. This paper proposes an on-line magnetic non-destructive testing method for oxide granules. The oxide scale-vapor sample from the main steam pipeline forms liquid-solid two-phase flow after the temperature and pressure reduction, and the oxide granules are separated by a separator and piled in the austenitic pipe. According to the difference of the magnetic features of the oxide scales and the austenitic pipe, the oxide granule accumulation height can be detected through the spatial gradient variations of the magnetic induction. The laboratory test results show that the oxide scale accumulation can be accurately calculated according to the spatial gradient changes around the magnetized oxide granules, with the detection error not exceeding 2%.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 703-714, October 21–24, 2019,
Abstract
View Paper
PDF
Advanced austenitic stainless steels, such as Super 304H, have been used in reheater and superheater tubes in supercritical and ultra-supercritical power plants for many years now. It is important to characterize the microstructure of ex-service reheater and superheater tubes as this will help researchers understand the long-term microstructural evolution and degradation of the material, which can impact the performance and lifetime of the components that are in service. In this research, the microstructure of an ex-service Super 304H reheater tube that has been in service for 99,000 hours at an approximate metal temperature of 873K (600°C) has been characterized. The characterization techniques used were electron microscopy-based and included imaging and chemical analysis techniques. Seven phases were observed as a result of the characterization work. The phases observed were MX carbonitrides rich in niobium, copper-rich particles, M 23 C 6 , sigma phase, Z phase, a cored phase, and a BCC phase.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 715-725, October 21–24, 2019,
Abstract
View Paper
PDF
The broken elbow of the final superheater tube (ASME SA213 TP304H) from a coal-fired power plant was evaluated. The root causes were identified by metallographic observation, sensitization evaluation, hardness measurement, and EBSD analysis. The analysis results reached the following conclusions. (1) The tube bending was not performed in accordance with ASME Code requirements—a solid-solution heat treatment was not performed after cold working. (2) The hardness at the elbow is greater than 260 HV, exceeding the ASME code limit. (3) The sensitization was 19%, showing a performance degradation. (4) There are no obvious corrosion elements in the oxide layers of the cracks. (5) Metallographic microstructure analysis shows that there are many intergranular cracks and carbides such as Cr-rich phase and Fe-Cr are precipitated at the grain boundaries, ultimately resulting in strain-induced precipitation hardening damage.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 726-737, October 21–24, 2019,
Abstract
View Paper
PDF
Due to their excellent high temperature oxidation resistance, utilities worldwide are adopting advanced austenitic stainless steels (A-ASS) for critical plant components, such as heat exchangers, as they aim to achieve higher operating conditions. However, challenges may be encountered in developing life assessment and life management strategies for such components. This is because conventional methods used for life assessment, such as measuring steam side oxide scale thickness in ferritic and conventional austenitic material to predict tube metal temperature, may not be successfully applied to A-ASS. In such instances, tracking the formation and evolution of microstructural features during service, may offer a possible method to predict the temperature of these steels. For such metallurgy based lifing strategy to be successful, it is essential to develop a good understanding of microstructure evolution in these steels. In this work one heat of Super 304H, that has been creep tested at 600°C, 650°C and 700°C, with applied stress ranging from 110 to 340 MPa, is characterized using a combination of advanced characterization tools and image analysis methods. The amount of sigma phase formed at the gauge and grip sections of the samples is quantified and the methodology used to quantify this phase is presented. From the results, a time-temperature-transformation diagram for sigma formation is developed.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 283-294, October 11–14, 2016,
Abstract
View Paper
PDF
For raising thermal efficiency and decreasing CO 2 emission, China had constructed the first 600°C ultra-supercritical(USC) fossil power plant in 2006. Now more than a hundred 600°C, 1000MW USC electric power units have been put in service. Recently, China has also developed 620°C USC power units and some of them have been put in service already. Meanwhile, more than fifty 620°C USC boilers will be produced by various China boiler companies. The austenitic steels TP347H, Super304H and HR3C are routinely used for 600°C USC boilers. Among these steels, a big amount of Super304H has been used for boiler superheater/reheater components application. However, Super304H is characterized by good stress-rupture strength but poor corrosion/oxidation resistance. On the other side, HR3C is characterized by very good corrosion/oxidation resistance but lower stress-rupture strength than Super304H. Now, the China 620°C USC project needs a new austenitic heat resisting steel with high stress-rupture strength and good corrosion/oxidation resistance to fulfill the superheater/reheater tube components application requirement. A new austenitic heat resisting steel SP2215 is based on 22Cr-15Ni with certain amount of Cu and also Nb and N for multiphase precipitation (MX, Cu-rich phase, NbCrN) strengthening in Fe-Cr-Ni austenitic matrix and M 23 C 6 carbide precipitation at grain boundaries. This SP2215 new austenitic steel is characterized by high stress-rupture strength (650°C, 105h>130MPa) and good corrosion/oxidation resistance. SP2215 austenitic steel has been commercially produced in tube product form. This SP2215 new austenitic heat-resisting steel is recommended to be used as superheater/reheater components for 620°C USC boiler application.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 295-303, October 11–14, 2016,
Abstract
View Paper
PDF
Alumina-forming austenitic stainless steels (AFAs) are potential materials for boiler/steam turbine applications in next generation fossil fuel power plants. They display a combination of good high temperature creep strength, excellent oxidation resistance and low cost. A recently-developed AFA alloy based on Fe-14Cr-32Ni-3Nb-3Al-2Ti (wt.%) shows better creep performance than a commercially-available Fe-based superalloy. In this paper we used scanning electron microscopy and transmission electron microscopy to study the fracture surfaces and cracking behavior in relation to the precipitates present in creep failure samples of this alloy tested at either 750°C/100 MPa or 700°C/170 MPa. It was found that most cracks are formed along the grain boundaries with precipitate-free zones beside the grain boundaries potentially providing the path for propagation of cracks.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 304-309, October 11–14, 2016,
Abstract
View Paper
PDF
The article gives a brief overview of the newly developed austenitic material “Power Austenite”. The microstructure of the Power Austenite is characterized by grain boundary strengthening with boron stabilized M23(C,B)6 and secondary Nb(C,N) in combination with sigma phase and Nb(C,N) as the major grain strengthening precipitates. The material shows a significant creep strength at 700 °C (1292 °F) and 650 °C (1202 °F) as well as fireside corrosion resistance which makes it a possible candidate for 700 °C (1292 °F) power plants.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 310-317, October 11–14, 2016,
Abstract
View Paper
PDF
Energy requirements and environmental concerns have promoted a development in higher-efficiency coal fired power technologies. Advanced ultra-super critical power plant with an efficiency of higher than 50% is the target in the near future. The materials to be used due to the tougher environments become therefore critical issues. This paper provides a review on a newly developed advanced high strength heat resistant austenitic stainless steel, Sandvik Sanicro 25, for this purpose. The material shows good resistance to steam oxidation and flue gas corrosion, and has higher creep rupture strength than any other austenitic stainless steels available today, and has recently obtained two AMSE code cases. This makes it an interesting option in higher pressures/temperature applications. In this paper, the material development, structure stability, creep strength, steam oxidation and hot corrosion behaviors, fabricability and weldability of this alloy have been discussed. The conclusion is that the Sanicro 25 is a potential candidate for superheaters and reheaters in higher-efficiency coal fired boilers i.e. for applications seeing up to 700°C material temperature.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 318-325, October 11–14, 2016,
Abstract
View Paper
PDF
New Fe-base ferritic alloys based on Fe-30Cr-3Al-Nb-Si (wt.%) were proposed with alloy design concepts and strategies targeted at improved performance of tensile and creep-rupture properties, environmental compatibilities, and weldability, compared to Grade 91/92 type ferritic-martensitic steels. The alloys were designed to incorporate corrosion and oxidation resistance from high Cr and Al additions and precipitate strengthening via second-phase intermetallic precipitates (Fe2Nb Laves phase), with guidance from computational thermodynamics. The effects of alloying additions, such as Nb, Zr, Mo, W, and Ti, on the properties were investigated. The alloys with more than 1 wt.% Nb addition showed improved tensile properties compared to Gr 91/92 steels in a temperature range from 600-800°C, and excellent steam oxidation at 800°C as well. Creep-rupture properties of the 2Nb-containing alloys at 700°C were comparable to Gr 92 steel. The alloy with a combined addition of Al and Nb exhibited improved ash-corrosion resistance at 700°C. Additions of W and Mo were found to refine the Laves phase particles, although they also promoted the coarsening of the particle size during aging. The Ti addition was found to reduce the precipitate denuded zone along the grain boundary and the precipitate coarsening kinetics.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 326-335, October 11–14, 2016,
Abstract
View Paper
PDF
This paper reports the performance of HR6W iron-nickel based alloy and 617B nickel based alloy which are the candidate material for high temperature reheater outlet header of advanced secondary reheat ultra-supercritical unit boiler with reheat steam 653 °C, and analysis the applicable temperature range of the material. As a result, HR6W is the appropriate material to manufacture high temperature reheater outlet header of A-USC boiler with parameters 620°C /653°C/653°C.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 336-346, October 11–14, 2016,
Abstract
View Paper
PDF
The mechanisms of recent cracking failures of HR3C super heater pipes of a fossil power plant in the Netherlands were investigated. Initial failure investigations showed that pitting corrosion of the sensitized HR3C initiated subsequent stress corrosion cracking (SCC). It was concluded that magnesium chloride hydrates from condensed seawater had initiated pitting corrosion as well as SCC similar to the standard ASTM G36 SCC test. By experimental application of the ASTM G36 procedure, this tentative mechanism is reproduced and confirmed by a series of laboratory tests with pure magnesium chloride as well as with synthetic seawater. It included the effects of temperature, magnesium chloride concentrations of the evaporating water and applied bending moments on cracking. As a result for the 175h testing period in MgCl2*6H 2 O cracking increases significantly above 100°C up to 120°C but is reduced slightly at temperatures up to 155°C. With increasing bending moments, the U-shaped test pieces revealed increasing crack depths up to total fracture of the 5mm thick sections. Lower magnesium chloride concentrations as in concentrated seawater provided identical cracking, however, to a lower extent. It is therefore concluded that the operational failure of the sensitized HR3C super heater pipes was initiated in presence of condensed seawater and followed the same mechanism as found in the experimental investigation. As a conclusion, the presence of seawater saturated air at temperatures between 100° and 155°C should be avoided.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 347-355, October 11–14, 2016,
Abstract
View Paper
PDF
Up to now, the amount of supercritical boilers in China has ranked number one in the world. Many supercritical boilers have run for more than 100,000 hours. Creep becomes one of the main reasons for supercritical boiler tubes failure. In this article, the failure of superheater tubes in a supercritical boiler was analyzed, the microstructural evolution of austenitic stainless steel tubes were studied, a full investigation into the failure cause was carried out involving in visual examination, optical microscope, SEM, TEM and XRD. The results show, sigma phase precipitates in this austenitic steel with the extension of service time, sigma precipitates form at grain boundaries by continuous chain. Sigma precipitates are hard and brittle, weaken grain boundaries and cause microscopic damage, eventually lead to boiler tubes failure.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 356-364, October 11–14, 2016,
Abstract
View Paper
PDF
A longitudinal crack and window opening type failure occurred in neutral zone that is applied to least plastic deformation in the bent TP347H tube during operation. From the analysis of residual stress and plastic deformation during the tube bending, there is low creep strength and high residual stress in neutral zone as compared other regions like intrados and extrados. Therefore, failure occurred in neutral zone due to stress relaxation concentrated in grain boundary during operation.
1