Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Date
Availability
1-20 of 28
Creep and General Topics
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 1139-1150, October 22–25, 2013,
Abstract
View Paper
PDF
Inflection is observed at 50% of 0.2% offset yield stress, that is HALF YIELD, on the relation between stress and creep rupture life of creep strength enhanced ferritic steels with tempered martensitic microstructure. Similar shape is generally recognized on the ferritic steels with martensitic or bainitic microstructure, in contrast to ferritic steels with ferrite and pearlite microstructure, as well as austenitic steels and superalloys except for several alloys. Ferritic steel with martensitic or bainitic microstructure indicates softening during creep exposure, however, hardening due to precipitation takes place in the ferritic steels with ferrite and pearlite microstructure and austenitic steels. This difference in microstructural evolution is associated with indication of inflection at half yield. Stress range of half yield in the stress vs. creep life diagram of creep strength enhanced ferritic steels is wider than that of conventional ferritic creep resistant steels with martensitic or bainitic microstructure. As a result of wide stress range of boundary condition, risk of overestimation of long-term creep rupture strength by extrapolating the data in the high-stress regime to the low-stress regime is considered to be high for creep strength enhanced ferritic steels.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 1151-1162, October 22–25, 2013,
Abstract
View Paper
PDF
An approach to phase analysis called multiphase separation technology (MPST) has been developed to determine phase chemistries of precipitated particles with sizes visible under SEM/EPMA observations based on the data from the conventional EDS measurements on bulk steel/alloy material samples. Quite accurate results from its applications have successfully been demonstrated by comparisons of SEM/EPMA - EDS + MPST with some other currently available means, for instance, chemical extractions (CA), TEM-EDS, AP-FIM and Thermo-Calc. etc. Applied examples regarding the relations of change in phase parameters including type, composition, volume fraction, size and distribution of the precipitated particles with material qualities, creep rupture lives, property stabilities, property recovery and boiler tube failures for some advanced heat resistant steels (P92, Super304H, HR3C, TP347HFG (H)) are given through the use of the SEM/EPMA - EDS + MPST in this contribution. Examples on phase quantifications of some nickel base superalloys (Nimonic263, Inconel 740 and Rhenium-containing alloys) are also shown to reveal the feasibility of its use in determining phase chemistries of precipitated particles under different measurement conditions. Practical applications of this combined technology to the material quality control and assessments, processing parameter improvements, as well as fracture/failure analyses of high temperature components have shown that this technology is quite convenient and effective when used for microstructural analysis purposes during R&D, manufacturing and operating processes.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 1163-1172, October 22–25, 2013,
Abstract
View Paper
PDF
25Cr-20Ni-Nb-N (Tp310HCbN) steel is a promising austenitic steel for applications in superheater tubes in coal fired thermal power plants due to the high creep strength and oxidation resistance. In this work, the microstructural evolution of this material during heat treatment and thermal ageing has been investigated. The investigations were carried out by Light Optical Microscopy (LOM), Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM) and Energy Dispersive Spectroscopy (EDS). Besides, equilibrium and Scheil calculations were carried out using the thermodynamic software MatCalc to analyse the stable phases and the solidification process, respectively. Precipitation calculations during solution annealing and subsequent ageing at 650 and 750°C were performed to predict the phase fraction and precipitates radius up to 10.000h ageing time. SEM and TEM investigations of aged specimens revealed the presence of six different precipitates: M 23 C 6 , Cr 2 N, sigma, Z-phase, eta-phase (Cr 3 Ni 2 Si(C,N)) and Nb(C,N). These precipitates were predicted and confirmed by MatCalc simulations. The calculated phase fraction and mean radius show good agreement with experimental data. Finally, simulations of different Cr-, C- and N-content in Tp310HCbN were performed.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 1173-1181, October 22–25, 2013,
Abstract
View Paper
PDF
The Creep Strength Enhanced Ferritic steel grade 91 is widely used for both retrofit applications and primary construction on high temperature power plant. Although to date most structural integrity issues with this material have been associated with welds, as the operating hours of these plants accumulate, there will be a growing need for remanent creep life assessment of the base material. Arguably this is already the case for aberrant grade 91 material entering service in an incorrectly heat treated condition. In these circumstances the strength may fall below the normally accepted lower bound of the creep strength range and some indication of actual strength may be required. One strategy to address potential base material failure is to use small scale sampling of individual components, followed by small scale creep testing, to investigate the current creep strength present. The data can be compared with the equivalent data produced for well characterised material known to be at the lower bound of the creep strength range. This paper describes a methodology for using the impression creep data obtained to provide both creep strength ranking and an estimate of absolute creep strength for individual grade 91 components. This will enable appropriate judgements to be made by plant operators on repair/run decisions. For those components remaining in service, it allows for the weakest items to be given priority for early re-inspection at future outages. The ultimate goal is to identify base material creep damage development at as early a stage as possible and well in advance of failure in service.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 1182-1189, October 22–25, 2013,
Abstract
View Paper
PDF
Addressing the growing concern of supercritical and ultra-supercritical boilers as potential safety hazards in power plants, a new Boiler Risk Management and Life Prediction System (BRMLPS) has been developed. This system leverages risk-based inspection and assessment techniques alongside life prediction and management methods. The BRMLPS focuses on evaluating and ranking the risk associated with critical boiler components, such as heating surfaces, headers, and drums. This risk assessment allows for the development of targeted and efficient inspection plans and repair strategies, ultimately aiming to minimize accident rates, reduce potential losses, and optimize safety investments. By implementing this system, power plants can achieve maintenance optimization, balancing safety and economic considerations for their specialized equipment.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 1190-1205, October 22–25, 2013,
Abstract
View Paper
PDF
Creep-fatigue crack formation (endurance) and crack growth rate data are necessary inputs for assessing the structural integrity and for estimating the design life of high temperature components in power generation and aircraft engine industries. Ensuring consistency in the reported test data, as well as an understanding of the inherent scatter and its source in the data, are both necessary for assuring quality and limitations of the analyses that rely on the data. In 2008, the American Society for Testing and Materials (ASTM) under the umbrella of its subcommittees E08.05 on Cyclic Deformation and Crack Formation and E08.06 on Crack Growth, and the sponsorship of Electric Power Research Institute (EPRI) through its international experts’ working group on creep-fatigue embarked on the task of developing separate standard test methods for creep-fatigue crack formation and creep-fatigue crack growth. The first standard entitled, “E-2714-09: Standard Test Method for Creep-fatigue Testing” was developed in 2009 and was followed up with a round-robin consisting of 13 laboratories around the world for testing the newly developed standard. This paper discusses the results of this round-robin concluded in 2012 using the widely used P91 steel that led to the formulation of the Precision and Bias statement contained in the version of the ASTM standard E2714 that was successfully balloted in the year 2013.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 1206-1219, October 22–25, 2013,
Abstract
View Paper
PDF
In today’s market place power generation plants throughout the world have been trying to reduce their operating costs by extending the service life of their critical machines such as steam turbines and gas turbines beyond the design life criteria. The key ingredient in plant life extension is remaining life assessment technology. This paper will outline remaining life procedures which will incorporate the defect tolerant design concepts applied to the various damage mechanisms such as creep, fatigue, creep-fatigue and stress corrosion cracking. Also other embrittlement mechanisms will also be discussed and how they will influence the life or operation of the component. Application of weld repairs to critical components such as rotors and steam chest casings will be highlighted and how defect tolerant design concept is applied for the repair procedure and the acceptance standard of the nondestructive testing applied. Also highlighted will be various destructive tests such as stress relaxation tests (SRT) which measures creep strength and constant displacement rate test (CDRT) which evaluates fracture resistance or notch ductility. Also shown will be actual life extension examples applied to steam turbine components and weld repairs. Utilization of computer software to calculate fatigue and creep fatigue crack growth will also be presented
Proceedings Papers
Krzysztof Cieszyński, Władysław Osuch, Maciej Kaczorowski, Stanisław Fudali, Aleksandra Czyrska-Filemonowicz
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 1220-1231, October 22–25, 2013,
Abstract
View Paper
PDF
Research on low-alloyed, heat-resistant 12Cr2MoWVTiB steel, implemented in China to power plants in 50’s last century, was performed to investigate a possibility of its application for pressure elements of boilers, in particular for membrane walls. The microstructure of the as-received 12Cr2MoWVTiB tube, investigated by light microscopy, scanning- and transmission electron microscopy, consists of ferritic grains with some bainite areas between them as well as primary carbides (MC) and secondary carbides (VC, M 23 C 6 , M 6 C) formed during tempering of the steel. Results of mechanical tests of 12Cr2MoWVTiB welded joints (butt- and fillet welded joints) as well as microstructure analyses of are satisfactory.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 1232-1243, October 22–25, 2013,
Abstract
View Paper
PDF
Welding of collector pipes, flat heads, dished ends and connector pipes performed with high temperature and creep-resistant steels most often has been performed using GTAW process combined with MMA processes. Progress in GMAW process and availability of high quality filler materials (solid wires) enables welding of the above connections also using this method. In order to prove its efficiency, this article presents the results of related tests. The range of tests was similar to that applied during the qualification of welding procedure. The investigation also involved microscopic and fractographic examinations and creep tests. The results reveal that welding with GMAW is by no means inferior to a currently applied SMAW method yet the time of the process is shorter by 50%. The article presents the world’s first known positive results in welding of P92 grade steel using GMAW welding method.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 1244-1255, October 22–25, 2013,
Abstract
View Paper
PDF
A prototype small punch test rig has been developed to extend the range of data output. Through the introduction of a probe, vertical displacements can be measured across a region of the specimen underside. This information provides much greater understanding of the specimen deformation. Having displacement data at a series of measurement points also facilitates the calculation of strains across the sample. The probe can also be used during a test to provide time dependent data from small punch creep tests. The measured displacement data have been used in conjunction with FE analysis to determine a set of calibration curves for inferring strain at any given vertical displacement. Some creep strain data are also presented.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 1256-1267, October 22–25, 2013,
Abstract
View Paper
PDF
Both non-destructive and traditional microsectioning techniques have been used to measure the oxide thickness of steam grown oxides between two close contacting surfaces. Different power plant materials, nickel based alloys and ferritic-martensitic steels, were exposed to steam oxidation at temperatures ranging from 650 °C up to 750 °C and periods from 500 h to 3000 h. Ultrasonic measurements of thickness, based on the speed of sound in the oxide, were performed and compared to optical thickness measurements based on conventional metallographic microsectioning with promising results. Improvements on the measurement resolution have been practically demonstrated with oxides down to 65 μm thickness being measured successfully.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 1268-1282, October 22–25, 2013,
Abstract
View Paper
PDF
Alloy 718, widely used for its high-temperature performance in various applications, is being investigated for use in advanced power plants. Driven by the need for efficiency improvements, these plants demand higher temperatures and pressures, putting significant stress on critical components like boiler tubes and turbines. With existing steels and alloys struggling at such high temperatures, researchers are exploring alternatives. New generation plants target steam turbine inlet temperatures of 720°C and pressures of 350MPa, necessitating superalloys for high- and intermediate-pressure rotor sections. The Thermie Advanced project explored the potential of 718 for these applications. A trial rotor disk, forged using advanced processes, underwent a novel heat treatment to enhance microstructural stability and improve creep behavior. Ongoing creep tests exceeding 100,000 hours suggest a potential 50°C increase in the operational limit compared to standard 718. This 12-year research effort holds promise for utilizing 718 in forged components of advanced ultra-supercritical power plant steam turbines, potentially operating up to 700°C.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 1283-1291, October 22–25, 2013,
Abstract
View Paper
PDF
The trial production of FENIX-700 turbine rotors for advanced-ultra super critical (A-USC) power generation was conducted, and their microstructure, tensile, impact, and creep properties were evaluated. Two 10-ton class trial forgings were successfully produced through double melting of VIM and ESR and free forging with a 14,000 ton hydraulic press. For examining the effect of the forging condition on the microstructure of the rotors, we adopted lower finish temperatures and an increased forging ratio on the last forging for the second trial. The grains of the second trial forging were refined by changing the forging condition. In particular, the grain size of the center of the rotor was remarkably decreased from the grain size number 0.5 to 2.8. Grain refinement improved the permeability of the ultrasonic wave in the ultrasonic inspection test, resulting in decreasing the minimum detectable flaw size (MDFS). The ductility and toughness were also improved by grain refinement. Although the grain size was decreased, the time to rupture in the creep test at 700 °C was comparable to the previous results of FENIX-700, and the estimated 105 h rupture stress at 700 °C was sufficiently higher than 100 MPa. However, it was clarified that the particles of gamma-prime in the center of the rotor had been coarsened due to the mass effect. The slight decrease of 0.2% proof stress and shortening of creep rupture time at 700 °C were attributed to the coarse gamma-prime particles. The results of the present trial expressly demonstrated that it is possible to manufacture 10-ton class A-USC turbine rotors of FENIX-700 with excellent mechanical properties and good permeability of the ultrasonic wave.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 1292-1303, October 22–25, 2013,
Abstract
View Paper
PDF
The Cr and W effect on the creep strength of ferritic steels were studied using the new strengthening hypothesis, precipitation strengthening mechanism, by examining the residual aligned precipitates consisting of W and Cr. In 2 mass% W-containing steel, the increase in Cr content up to 10 mass% resulted in the creep life extension. However, the Cr content higher than 11 mass% decreased the creep life. In 9 mass% Cr-containing steel, the increase in W content decreased the creep deformation rate with creep time. However, it also shortened the time to reach the minimum creep rate. Therefore, optimum Cr and W contents possibly resulted in the optimum alloy design. To understand the effect of W and Cr contents on creep strength, the precipitation strengthening hypothesis by the precipitates at the block boundary must be introduced. The residual aligned precipitation line is supposedly an effective obstacle for the dislocation motion at the interparticle space of the aligned precipitates. The new hypothesis will be activated after block boundary migration. It occurs during the acceleration creep period. On the basis of the hypothesis, creep strength was expressed as the summation of threshold creep stress and effective internal creep stress. According to the experimental data of microstructure recovery, the effective internal stress decreased with creep deformation and consequently vanished. In such cases, creep strength is decided only by the threshold stress of creep. Integrating all, we concluded that the creep deformation mechanism of ferritic creep-resistant steel possibly transits from the viscous dislocation gliding mode to the microstructure recovery driven type mode during the acceleration creep.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 1304-1312, October 22–25, 2013,
Abstract
View Paper
PDF
In power plants operated at elevated temperatures, the operating life of structural materials increases. Therefore, it is very important to be able to predict creep strength in long term above 100,000 h. Furthermore, it has been reported that in the long term, the actual creep strength is lower than the predicted life. Although this problem has been analysed, the reasons remain unclear. In this study, a fracture energy model is used to evaluate the mechanisms of the creep strength reduction for martensitic steels. In the model, changes in fracture energy with rupture time are expressed by a power law. The energy density rate is calculated using stress, rupture elongation, and rupture time. The model indicates two mechanisms of creep strength reduction. One is the increase in rupture elongation, which leads to reduction in creep strength with ductility; the other is the decrease in reduction of area, which leads to reduction in creep strength with brittleness. Difference between the two mechanisms affects creep-fatigue strength. The study also shows that the equation based on the fracture energy model for creep-fatigue life can be obtained by a parallel translation of that for creep.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 1313-1328, October 22–25, 2013,
Abstract
View Paper
PDF
9-12%Cr martensitic-ferritic steels continue to be developed for target temperatures of 650°C. This paper reviews the performance of two experimental European steels against the performance of the better known grade 92 alloy. It comments on the problem of type IV cracking and the effect of welding variables on cross-weld creep performance. Preliminary results from an on-going creep test programme are presented in context, and the findings compared with published data.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 1329-1340, October 22–25, 2013,
Abstract
View Paper
PDF
A new 9%Cr steel with high boron levels (boron steel) has been developed by optimization studies on steels and alloys that are applicable to advanced ultra-super critical power plants operated at steam conditions of 700°C and 30 MPa and above. The composition and heat treatment condition of boron steel was optimized by the initial hardness, tensile strength, yield strength, and Charpy impact values on the basis of the fundamental investigation with the stability of the long-term creep strength. Creep testing of boron steel was conducted at temperatures between 600 and 700°C. The creep rupture strength at 625°C and 105 h is estimated to be 122 MPa for the present 9% Cr steel with high boron by Larson-Miller parameter method. Furthermore, physical properties as a function of temperature, metallurgical properties, tensile properties, and toughness were examined to evaluate the applicability of the steel for a 625°C USC power plant boiler. It was also confirmed that the steel has good workability for such an application by the flaring and flattening tests with tube specimens having an outer diameter of approximately 55 mm.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 1341-1351, October 22–25, 2013,
Abstract
View Paper
PDF
In order to develop an Fe/Ni dissimilar-weld rotor structure for an Advanced Ultra Super Critical turbine, fundamental studies on the metallurgical properties of Fe/Ni welds are needed. In the work reported in this paper, we studied the microstructure evolution and creep rupture properties of Fe/Ni weld joints with different compositions. Investigation of thermally aged Fe/Ni diffusion couples revealed that Fe-based ferritic steel and Alloy 617 weld joints with a large difference in Cr content showed strong C diffusion at the weld interface. This decreased the creep rupture life of the weld joint, caused by coarsening of a martensitic structure near the interface. Analysis using Fe/Ni diffusion couples and thermodynamic calculations suggested that the driving force of C diffusion is the chemical potential gradient at the interface, and the difference in Cr content between Fe and Ni accelerates the C diffusion.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 1352-1362, October 22–25, 2013,
Abstract
View Paper
PDF
In this study, we have examined the creep of a novel austenitic heat resistant steel of Fe-20Cr- 30Ni-2Nb (at.%) steel at 1073K in steam and air atmospheres. Our studied steels were Fe-20Cr- 30Ni-2Nb (base steel) and that with 0.03 at. %B (B-doped steel) . The addition of boron is to intentionally increase the area fraction of Laves phase on grain boundaries (ρ). The specimen with ρ = 43% (base steel pre-aged at 1073 K/240 h) exhibits the rupture life of 262 h, whereas the rupture life of the specimen with higher ρ of 80% (B-doped steel pre-aged at 1073 K/240 h) is 833h, which is about three times longer than that of the specimen with ρ = 43%. The specimen with ρ = 80% exhibits smaller creep rate than those with lower ρ than 43% in the entire creep stage. In addition, all specimens show the creep rupture strain of about 60%. The creep rupture life is almost same to that tested under air, whereas the creep rupture strain is slightly smaller (a few percent) than that under air. In the surface of the creep ruptured specimen in steam, the intergranular oxides associated with voids or cavities are often present and grow along grain boundaries to over 100 μm in depth. The intergranular oxidation occurs more extensively in steam rather than air. These results demonstrate that stable Fe 2 Nb Laves phase on grain boundary could increase the creep resistance of the present steel at 1073K without ductility loss in steam as well as air, resulting in the pronounced extension of rupture life. The intergranular oxidation accelerated by steam would not give a serious effect on the creep properties of the present steel below 103 hours in rupture life.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 1363-1371, October 22–25, 2013,
Abstract
View Paper
PDF
Prediction of long-term creep strength is an important issue for industrial plants operated at elevated temperatures, although the creep strength of high Cr ferritic steels depends on their microstructural evolution during creep. The state of microstructure in metallic materials can be expressed as numerical values based on a concept of system free energy. In this study, in order to evaluate long term creep strength of 9Cr ferritic steel containing B, change in the system free energy during creep of the steel is evaluated as the sum of chemical free energy, strain energy and surface energy, which are obtained by a series of experiments, i.e., chemical analysis using extracted residues, X-ray diffraction, and scanning transmission electron microscopy. The system free energy decreases with creep time. Change in the energy is expressed quantitatively as a numerical formula using the rate constants which depend on applied stress. On the basis of these facts, long term creep strength of the steel can be evaluated at both 948K(675°C) and 973K(700 °C).
1