Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Date
Availability
1-6 of 6
Corrosion
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 1075-1085, October 11–14, 2016,
Abstract
View Paper
PDF
In Europe between 2006 and 2012 several ultra-super-critical (USC) coal-fired power plants were built employing T24 (7CrMoVTiB10-10 / DIN EN 10216-2:2014-03 / VdTÜV sheet 533/2) in membrane walls. During commissioning stress corrosion cracking (SCC) on the tube-to-tube butt welds appeared. The widespread damages required the development of a new patented commissioning procedure to avoid recurring damages. Although this commissioning procedure was employed successfully and the power plants are in operation since then, a debate about the implementation of a hardness limit for such butt welds was initiated. According to the European standards butt welds of T24 boiler tubes with wall thickness < 10 mm (0.3937 in) do not require any post-weld heat treatment (PWHT) and no hardness limits are given. When looking at manufacturing related issues such as an imminent risk of cold cracking after welding of micro-alloyed steels a widely applied but coarse hardness limit is 350 HV. Based on laboratory tests, some authors reallocated this 350 HV hardness limit for addressing SCC susceptibility of low-alloyed steels. This article describes typical hardness levels of T24 boiler tube TIG butt welds and the SCC behavior in high temperature water. Further the effect of the stress relief heat treatment (SRHT) of the boiler membrane walls between 450 °C and 550 °C (842 °F and 1022 °F) on its hardness values and on the SCC behavior is discussed, showing that the hardness values should not be used as an indicator for SCC susceptibility of T24 boiler tube butt welds.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 1086-1097, October 11–14, 2016,
Abstract
View Paper
PDF
During commissioning of recently built modern, and highly efficient coal-fired power plants, cracks were detected after very short time of operation within the welds of membrane walls made from alloy T24. The root cause analysis revealed transgranular and mostly intergranular cracks adjacent to the heat affected zone beside weld joints. At that time, the degradation mechanism was rather unclear, which led to an extended root cause analysis for clarification of these failures. The environmentally assisted cracking behavior of alloy T24 in oxygenated high-temperature water was determined by an experimental test program. Hereby, the cracking of 2½% chromium steel T24 and 1% chromium steel T12 were determined in high-temperature water depending on the effect of water chemistry parameters such as dissolved oxygen content, pH, and temperature, but also with respect to the mechanical load component by residual stresses and the microstructure. The results clearly show that the cracking of this low-alloy steel in oxygenated high-temperature water is driven by the dissolved oxygen content and the breakdown of the passive corrosion protective oxide scale on the specimens by mechanical degradation of the oxide scale as fracture due to straining. The results give further evidence that a reduction of the residual stresses by a stress relief heat treatment of the boiler in combination with the strict compliance of the limits for dissolved oxygen content in the feed water according to water chemistry standards are effective countermeasures to prevent environmentally assisted cracking of T24 membrane wall butt welds during plastic strain transients.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 1098-1112, October 11–14, 2016,
Abstract
View Paper
PDF
Starting in 2010 a new generation of coal fired power plants in Europe operating at a steam temperature of up 620°C was commissioned. During that commissioning process many cracks occurred in welds of T24 material which was extensively used as membrane wall material in nearly all of the new boilers. The cracks were caused by stress corrosion cracking (SCC) only occurring in the areas of the wall being in contact to high temperature water during operation. The question which step of the commissioning process really caused the cracking was not answered completely even several years after the damage occurred. To answer this question and to define parameters which will lead to cracking in high temperature water many tests were conducted. Generally it was found that slow tensile tests in controlled environment are well suited to get information about materials SCC sensitivity in the laboratory. In the present paper, first the influence of the cracking of welded T24 material in acidic environment containing well-defined amounts of H2S is investigated to address the question if a chemical cleaning process prior to the testing might lead to hydrogen induced SCC. As a second step, cracking behaviour in high temperature water is being investigated. Here the influence of the temperature, the oxygen concentration of the water, the deformation speed of the sample, the heat treatment and the condition of the material on the SCC is analysed.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 1113-1125, October 11–14, 2016,
Abstract
View Paper
PDF
The steam oxidation behaviour of boiler tubes and steam piping components is a limiting factor for improving the efficiency of the current power plants. Spallation of the oxide scales formed during service can cause serious damage to the turbine blades. Vallourec has implemented an innovative solution based on an aluminum diffusion coating applied on the inner surface of the T/P92 steel. The functionality of this coating is to protect the tubular components against spallation and increase the actual operating temperature of the metallic components. In the present study, the newly developed VALIORTM T/P92 product was tested at the EDF La Maxe power plant (France) under 167b and 545°C (steam temperature). After 3500h operation, the tubes were removed and characterized by Light Optical Metallography (LOM), Scanning Electron Microscopy (SEM), with Energy Dispersive X-ray spectrometry (EDX) and X-Ray Diffraction (XRD). The results highlight the excellent oxidation resistance of VALIORTM T/P92 product by the formation of a protective aluminum oxide scale. In addition, no enhanced oxidation was observed on the areas close to the welds. These results are compared with the results obtained from laboratory steam oxidation testing performed on a 9%Cr T/P92 steel with and without VALIORTM coating exposed in Ar-50%H 2 O at 650°C.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 1126-1137, October 11–14, 2016,
Abstract
View Paper
PDF
Solar salts are used as an energy storage media and heat transfer fluid in power plants. The salts can cause significant corrosion to various steels that are in contact with the salt. Static corrosion tests performed with different steels show, that the corrosive attack by industrial grade salt melts is more severe than by defined grade salt melts and the sample corrosion is faster (i.e. the weight gain is larger) for higher temperatures. Slow strain rate (SSR) tests in salt are difficult to conduct due to the corrosive attack of the salt also on the test setup. The SSRT setup in salt could be realized and tests could be conducted successfully. No clear evidence for an accelerated failure of samples tested in salt compared to samples tested in air could be found on Alloy 347 Nb. Comparative low cycle fatigue (LCF) tests at air and in molten salt atmosphere were successfully performed and showed similar results on tubes out of Sanicro 25. No evidence of accelerated crack growth in molten salt could be found.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 1138-1148, October 11–14, 2016,
Abstract
View Paper
PDF
Prior to utilizing new advanced materials in coal power plants, a large number of experimental testing is required. Test procedures are needed in specialized high temperature laboratories with state of the art facilities and precise, accurate analytical equipment capable of performing tests at a variety of temperatures and environments. In this study, the results of a unique technique involving salt spray testing at high temperatures are presented. The Haynes 282 gamma – prime (γ’) strengthened alloy fabricated by means of three different manufacturing processes: HAYNES 282 WROUGHT alloy, Haynes 282-SINT alloy, and finally Haynes 282-CAST alloy have been tested. The materials have been exposed to a salt spray corrosion atmosphere using 1% NaCl - 1% Na 2 SO 4 . Post exposure investigations have included SEM, EDS and XRD examinations. The test using salt spray of 1% NaCl - 1% Na 2 SO 4 water solution at 550 °C for 500 hours indicted no influence on the corrosion products formation, where Cr 2 O 3 has been developed in all three alloys, whereas NiO has been found only in Haynes 282-CAST material. On the other hand, it has been found that the fabrication process of HAYNES 282 alloy strongly influences the corrosion products formation under the high temperature exposures.