Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Date
Availability
1-20 of 53
Boiler Materials
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Proceedings Papers
AM-EPRI2010, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Sixth International Conference, 72-85, August 31–September 3, 2010,
Abstract
View Papertitled, Advances in Materials Technology for A-USC Power Plant Boilers
View
PDF
for content titled, Advances in Materials Technology for A-USC Power Plant Boilers
Recent advances in materials technology for boilers materials in the advanced USC (A-USC) power plants have been reviewed based on the experiences from the strengthening and degradation of long term creep properties and the relevant microstructural evolution in the advanced high Cr ferritic steels. P122 and P92 type steels are considered to exhibit the long term creep strength degradation over 600°C, which is mainly due to the instability of the martensitic microstructure strengthened too much by MX carbonitrides. This can be modified by reducing the precipitation of VN nitride and by optimizing the Cr content of the steels. An Fe-Ni based alloy, HR6W strengthened by the Fe2W type Laves phase is found to be a marginal strength level material with good ductility at high temperatures over 700°C and to be used for a large diameter heavy wall thick piping such as main steam pipe and hot reheat pipe in A-USC plants, while Ni-Co based alloys such as Alloys 617 and 263 strengthened by a large amount of the y’ phase are found to be the high strength candidate materials for superheater and reheater tubes, although they are prone to relaxation cracking after welding and to grain boundary embrittlement during long term creep exposure. A new Ni based alloy, HR35 strengthened by a-Cr phase and other intermetallic phases has been proposed for piping application, which is specially designed for a good resistance to relaxation cracking as well as high strength and a good resistance to steam oxidation and fire-side corrosion at high temperatures over 700°C.
Proceedings Papers
AM-EPRI2010, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Sixth International Conference, 86-95, August 31–September 3, 2010,
Abstract
View Papertitled, GKM Test Rig: Investigation of the Long Term Operation Behavior of Tubes and Forgings Made of Alloys for Future High Efficient Power Plants
View
PDF
for content titled, GKM Test Rig: Investigation of the Long Term Operation Behavior of Tubes and Forgings Made of Alloys for Future High Efficient Power Plants
This paper introduces the GKM (Grosskraftwerk Mannheim AG) test rig, designed to evaluate new Ni-based alloys and austenitic steels for components in advanced 700°C power plants under real operational conditions. The test rig, integrated into a conventional coal-fired power plant in Mannheim, Germany, simulates extreme conditions of up to 725°C and 350/200 bar pressure. After approximately 2000 hours of operation, the paper presents an overview of the rig's design, its integration into the existing plant, and the status of ongoing tests. It also outlines parallel material investigations, including creep rupture tests, mechanical-technological testing, and metallurgical characterization. This research is crucial for the development of materials capable of withstanding the severe conditions in next-generation power plants, potentially improving efficiency and performance in future energy production.
Proceedings Papers
AM-EPRI2010, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Sixth International Conference, 96-109, August 31–September 3, 2010,
Abstract
View Papertitled, Optimization of Inconel Alloy 740 for Advanced Ultra Supercritical Boilers
View
PDF
for content titled, Optimization of Inconel Alloy 740 for Advanced Ultra Supercritical Boilers
Inconel alloy 740 was initially developed to enable the design of coal-fired boilers capable of operating at 700°C steam temperature and high pressure. The alloy successfully met the European program's targets, including 100,000-hour rupture life at 750°C and 100 MPa stress, and less than 2 mm metal loss in 200,000 hours of superheater service. However, thick section fabrication revealed weldability challenges, specifically grain boundary microfissuring in the heat affected zone (HAZ) of the base metal. This paper describes the development of a modified variant with significantly improved resistance to HAZ microfissuring and enhanced thermal stability, while maintaining desirable properties. The formulation process is detailed, and properties of materials produced within the new composition range are presented. Additionally, the microstructural stability of the original and modified alloy compositions is compared, demonstrating the advancements achieved in this critical material for next-generation power plants.
Proceedings Papers
AM-EPRI2010, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Sixth International Conference, 110-126, August 31–September 3, 2010,
Abstract
View Papertitled, Microstructural Evolution in Nimonic 263 for High-Temperature Power Plants
View
PDF
for content titled, Microstructural Evolution in Nimonic 263 for High-Temperature Power Plants
To address current energy and environmental demands, the development and implementation of more efficient power plants is crucial. This efficiency improvement is primarily achieved by increasing steam temperatures and pressures, necessitating the introduction of new materials capable of withstanding these extreme conditions. Nickel-based alloys emerge as prime candidates for high-temperature and high-pressure applications, offering significant creep strength and the ability to operate at metal temperatures above 750°C. This research focuses specifically on steam header and pipework systems, which are critical components carrying steam from boilers to turbines under severe operating conditions. The study emphasizes the importance of selecting suitable materials for these components and developing methodologies to predict their safe operating lifetimes, thereby ensuring the reliable and efficient operation of next-generation power plants.
Proceedings Papers
AM-EPRI2010, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Sixth International Conference, 127-139, August 31–September 3, 2010,
Abstract
View Papertitled, Long Term Properties and Microstructural Evolution of ASTM Grade 23
View
PDF
for content titled, Long Term Properties and Microstructural Evolution of ASTM Grade 23
ASTM Grade 23 is a 2.25Cr-0.3Mo-1.5W-V-Nb-B steel widely used for the fabrication of boiler components of the most recent ultra super critical power plants; it combines high creep resistance, enhanced oxidation and corrosion resistance and good weldability. Microstructural, mechanical, and creep properties of seamless tubes and pipes after normalizing and tempering heat treatment are compared with those obtained after cold bending and hot induction bending. The creep resistance is obtained through the precipitation of fine carbides after tempering. A broad program of TEM investigations on crept samples has been carried out in order to assess the evolution of the microstructure and its phases after long term high-temperature exposure, in terms of chemical composition, size and distribution of precipitates.
Proceedings Papers
AM-EPRI2010, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Sixth International Conference, 140-152, August 31–September 3, 2010,
Abstract
View Papertitled, Evaluation of 18Cr-9Ni-3Cu-Nb-N Austenitic Stainless Tubes for Ultra-Supercritical Power Boiler
View
PDF
for content titled, Evaluation of 18Cr-9Ni-3Cu-Nb-N Austenitic Stainless Tubes for Ultra-Supercritical Power Boiler
Creep-resistant austenitic stainless steels are known to be the potential candidate materials for use as super- and re-heater tubes in ultra-super critical (USC) power plants. Among them, ASTM A213/A213M S30432, a novel 18-8 stainless steel (18Cr- 9Ni-3Cu-Nb-N), has attracted considerable attention from electric industry due to its combined lower cost and more excellent performance in contrast to traditional TP347H steel. More than 10 years of service in Japan laid a solid foundation for the steel being selectable USC boiler materials. Steels of S30432 have been recently developed in China during the past few years. This paper presents the evaluation results of S30432 tubes manufactured by four steel plants in China as well as Sumitomo super304H tubes for comparison. A detailed microstructural analysis of the tubes has been performed by using optical and electron microscope, and mechanical properties of the tubes have been evaluated using hardness testing as well as tensile testing up to 700°C. It was found that the impurity elements, nonmetallic inclusions and grain size of the S30432 tubes were well controlled. TEM observation revealed the microstructural changes for a selected batch of S30432 specimens in condition of hot rolled material, as-extruded tube, solution treated tube and 650°C/1000h aged tube. Most attention was paid to the morphology and distribution of precipitates in the microstructure which should be responsible for the enhanced performance of the steel. Although the hardness of all the evaluated tubes was measured to be similar, they showed more or less differences in tensile properties between each other. Creep rupture testing is still in progress, and the steel might exhibit excellent long-term creep rupture strength at 650°C as was predicted from the currently available testing results.
Proceedings Papers
AM-EPRI2010, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Sixth International Conference, 153-163, August 31–September 3, 2010,
Abstract
View Papertitled, Long-Term Creep Properties of 2.25Cr-1.6W-VNbB Steel (T23/P23) for Fossil Fired and Heat Recovery Boilers
View
PDF
for content titled, Long-Term Creep Properties of 2.25Cr-1.6W-VNbB Steel (T23/P23) for Fossil Fired and Heat Recovery Boilers
The creep enhanced low alloy steel with 2.25Cr-1.6W-V-Nb (HCM2S; Gr.23, ASME CC2199) has been originally developed by Mitsubishi Heavy Industries, Ltd. and Sumitomo Metal Industries, Ltd. The steel tubes and pipe (T23/P23) are now widely used for fossil fired power plants all over the world. Recently, the chemical composition requirements for ASME Code of the steel have been changed and a new Code Case 2199-4 has been issued with the additional restriction regarding Ti, B, N and Ni, and the Ti/N ratio incorporated. In this study, the effects of additional elements of Ti, N and B on the mechanical properties and microstructure of T23/P23 steels have been evaluated. It is found that N decreases the hardenability of the steel by forming BN type nitride and thus consuming the effective B, which is a key element for hardening of the steel. The addition of Ti, on the other hand, enhances the hardenability of the steel by precipitating TiN and thus increasing the effective B. It is also found that too much addition of Ti degrades the Charpy impact property and creep ductility of the steel to a great extent. This phenomenon might affect the steel's long-term creep rupture properties, although a steel with the original chemical composition has demonstrated high creep strength at temperatures up to 600°C for more than 110,000 h.
Proceedings Papers
AM-EPRI2010, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Sixth International Conference, 164-170, August 31–September 3, 2010,
Abstract
View Papertitled, Effect of Pre-Strain on Creep Properties of Alloy 740
View
PDF
for content titled, Effect of Pre-Strain on Creep Properties of Alloy 740
The effects of pre-strain on creep properties of Alloy 740 have been investigated. Tensile strain was 7.5% and introduced by room temperature tensile test. Creep tests were conducted under 750 degree C, 275-350MPa. Creep rupture life of pre-strained sample decreased by half compared with as-heat treated sample. Creep behaviors of both samples were almost similar in primary creep stage, but onset of creep rate acceleration of pre-strained sample was faster than those of as-heat treated sample. As a result, minimum creep rate of pre-strained sample were two times larger than that of as-heat treated sample. From the observation of ruptured specimen, pre-strained sample had much more sub cracks than as-heat treated sample. On the other hand, microstructure of both samples was also different. There were MC precipitates on grain boundary in both ruptured specimens, but both size and number of MC precipitates were larger in pre-strained sample although creep life of pre-strained sample was shorter than that of as-heat treated sample. In this paper, the difference of creep behavior will be discussed in terms of both the microstructural change and mechanical damage.
Proceedings Papers
AM-EPRI2007, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fifth International Conference, 92-106, October 3–5, 2007,
Abstract
View Papertitled, Feasibility of MARBN Steel for Application to Thick Section Boiler Components in USC Power Plant at 650 °C
View
PDF
for content titled, Feasibility of MARBN Steel for Application to Thick Section Boiler Components in USC Power Plant at 650 °C
A 9Cr-3W-3Co-VNbBN steel, designated MARBN ( MAR tensitic 9Cr steel strengthened by B oron and N itrides), has been alloy-designed and subjected to long-term creep and oxidation tests for application to thick section boiler components in USC power plant at 650 o C. The stabilization of lath martensitic microstructure in the vicinity of prior austenite grain boundaries (PAGBs) is essential for the improvement of long-term creep strength. This can be achieved by the combined addition of 140ppm boron and 80ppm nitrogen without any formation of boron nitrides during normalizing at high temperature. The addition of small amount of boron reduces the rate of Ostwald ripening of M 23 C 6 carbides in the vicinity of PAGBs during creep, resulting in stabilization of martensitic microstructure. The stabilization of martensitic microstructure retards the onset of acceleration creep, resulting in a decrease in minimum creep rate and an increase in creep life. The addition of small amount of nitrogen causes the precipitation of fine MX, which further decreases the creep rates in the transient region. The addition of boron also suppresses the Type IV creep-fracture in welded joints by suppressing grain refinement in heat affected zone. The formation of protective Cr 2 O 3 scale is achieved on the surface of 9Cr steel by several methods, such as pre-oxidation treatment in Ar gas, Cr shot-peening and coating of thin layer of Ni-Cr alloy, which significantly improves the oxidation resistance of 9Cr steel in steam at 650 o C. Production of a large diameter and thick section pipe and also fabrication of welds of the pipe have successfully been performed from a 3 ton ingot of MARBN.
Proceedings Papers
AM-EPRI2007, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fifth International Conference, 107-118, October 3–5, 2007,
Abstract
View Papertitled, Materials Solutions for Advanced Steam Power Plants
View
PDF
for content titled, Materials Solutions for Advanced Steam Power Plants
Significant research efforts are underway in Europe, Japan, and the U.S. to develop the technology to increase the steam temperature in fossil power plants in order to achieve greater efficiency and reduce the amount of greenhouse gases emitted. The realization of these advanced steam power plants will require the use of nickel-based superalloys having the required combination of high-temperature creep strength, oxidation resistance, thermal fatigue resistance, thermal stability, and fabricability. Haynes 230 and 282 alloys are two materials that meet all of these criteria. The metallurgical characteristics of each alloy are described in detail, and the relevant high-temperature properties are presented and discussed in terms of potential use in advanced steam power plants.
Proceedings Papers
AM-EPRI2007, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fifth International Conference, 119-128, October 3–5, 2007,
Abstract
View Papertitled, Creep Properties of Carbon and Nitrogen Free Austenitic Alloys for USC Power Plants
View
PDF
for content titled, Creep Properties of Carbon and Nitrogen Free Austenitic Alloys for USC Power Plants
Various carbon and nitrogen free martensitic alloys were produced for the application which required long time creep properties at high temperatures. But they were easy transformed to austenite phase before the creep tests because of low Ac1 temperature. In this paper, a new attempt has been demonstrated using carbon and nitrogen free austenitic alloys strengthened by intermetallic compounds. We choose Fe-12Ni-9Co-10W-9Cr-0.005B based alloy. Furthermore, we discussed about creep characteristics among the wide range of the testing conditions more over 700°C and steam oxidation resistance to confirm the possibility of the alloys for the future USC power plants under the severe environments.
Proceedings Papers
AM-EPRI2007, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fifth International Conference, 129-139, October 3–5, 2007,
Abstract
View Papertitled, Development of High Strength HCMA (1.25Cr-0.4Mo-Nb-V) Steel Tube
View
PDF
for content titled, Development of High Strength HCMA (1.25Cr-0.4Mo-Nb-V) Steel Tube
Improvement of thermal efficiency of new power plants by increasing temperature and pressure of boilers has led us to the development of high creep strength steels in the last 10 years. HCMA is the new steel with base composition of 1.25Cr-0.4Mo-Nb-V-Nd, which has been developed by examining the effects of alloying elements on microstructures, creep strength, weldability, and ductility. The microstructure of the HCMA is controlled to tempered bainite with low carbon content and the Vickers hardness value in HAZ is less than 350Hv to allow the application without preheating and post weld heat treatment. The HCMA tube materials were prepared in commercial tube mills. It has been demonstrated that the allowable stress of the HCMA steel tube is 1.3 times higher than those of conventional 1%Cr boiler tubing steels in the temperatures range of 430 to 530°C. It is noted that creep ductility has been drastically improved by the suitable amount of Nd (Neodymium)-bearing. The steam oxidation resistance and hot corrosion resistance of the HCMA have been proved to be the same level of the conventional 1%Cr and 2%Cr steels. It is concluded that the HCMA has a practical capability to be used for steam generator tubing from the aspect of good fabricability and very high strength. This paper deals with the concept of material design and results on industrial products.
Proceedings Papers
AM-EPRI2007, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fifth International Conference, 140-152, October 3–5, 2007,
Abstract
View Papertitled, Experience with the Use of P91 Steel and Development of Tools for Component Integrity/Life Assessment
View
PDF
for content titled, Experience with the Use of P91 Steel and Development of Tools for Component Integrity/Life Assessment
Martensitic steel P91 with higher creep strength was first introduced as thick section components in power plants some 18 years ago. However, more recently a number of failures have been experienced in both thick and thin section components and this has given rise to re-appraisal of this steel. Thick section components are generally known to have failed due to Type IV cracking. Furthermore, due to the restructuring of the electricity industry worldwide many of the existing steam plant are now required to operate in cycling mode and this requires the use of materials with high resistance to thermal fatigue . Here high strength P91 is assumed to offer an additional benefit in that the reduced section thickness increases pipework flexibility and reduces the level of through wall temperature gradients in thick section components. Because of this envisaged benefit a number of operators/owners of the existing plant, especially in the UK, have been substituting these new higher strength steels for the older materials, especially when a plant is moved from base load to cyclic operation. There has also been a perceived advantage of higher steam side oxidation resistance of superheater tubes made from high Cr steels. For the Heat Recovery Steam Generators (HRSGs) used in Combined Cycle Gas Turbines (CCGTs) there is a requirement to produce compact size units and thus high strength steels are used to make smaller size components. This paper discusses these issues and compares the envisaged benefits with the actual plant experience and more recent R&D findings. In view of these incidents of cracking and failures it is important to develop life assessment tools for components made from P91 steel. ETD has been working on this through a ‘multi-client project' and this aspect will be discussed in this paper.
Proceedings Papers
AM-EPRI2007, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fifth International Conference, 153-167, October 3–5, 2007,
Abstract
View Papertitled, Investigating the Strain Limits of Cold Formed, High Temperature Austenitic Materials for Fabricating USC Boiler Components
View
PDF
for content titled, Investigating the Strain Limits of Cold Formed, High Temperature Austenitic Materials for Fabricating USC Boiler Components
The construction of highly efficient Ultra Supercritical (USC) boiler systems to operate with steam temperatures up to 760°C (1400°F) and with steam pressures up to 34.5 MPa (5000 psi) will require the use of advanced high temperature, high strength materials. As part of a 5-year project to qualify advanced boiler materials for USC power plants, a number of austenitic materials have been selected for further development and use in USC boiler systems, including alloys 230, 740, CCA 617, HR6W, and Super 304H. In one task of this project, boiler fabrication guidelines appropriate for the use of these alloys were investigated. Because it is recognized that cold formed and mechanically strained austenitic materials can degrade in material creep strength, a study to investigate the limits of strain and temperature exposure for the USC alloys was undertaken. An objective of this work was to determine for each USC alloy a relationship between the level of cold strain and the conditions of time and temperature that will cause recrystallization and significant microstructural change. The ultimate goal of this work was to determine limits of strain, due to cold forming, that can be tolerated before heat treatment is required, similar to those limits provided for the austenitic materials (e.g., 300-series stainless steels, alloy 800H) in Table PG-19 in Section I of the ASME Boiler and Pressure Vessel Code. This paper will describe the technical approach for 1) preparing specimens having discrete cold strains ranging from about 1 to 40 percent, 2) exposing these strained specimens for selected times at various elevated temperatures, 3) identifying the onset of recrystallization in the microstructures of the exposed specimens, and 4) establishing a useful engineering method to predict conditions for the onset of recrystallization in the USC alloys using the experimental results.
Proceedings Papers
AM-EPRI2007, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fifth International Conference, 168-184, October 3–5, 2007,
Abstract
View Papertitled, Creep Properties and Strengthening Mechanisms In 23Cr-45Ni-7W (HR6W) Alloy and Ni-Base Superalloys For 700°C A-USC Boilers
View
PDF
for content titled, Creep Properties and Strengthening Mechanisms In 23Cr-45Ni-7W (HR6W) Alloy and Ni-Base Superalloys For 700°C A-USC Boilers
The development of materials technologies for piping and tubing in advanced ultrasupercritical (A-USC) power plants operating at steam temperatures above 700°C represents a critical engineering challenge. The 23Cr-45Ni-7W alloy (HR6W), originally developed in Japan as a high-strength tubing material for 650°C ultra-supercritical (USC) boilers, was systematically investigated to evaluate its potential for A-USC plant applications. Comparative research with γ-strengthened Alloy 617 revealed that the tungsten content is intimately correlated with Laves phase precipitation and plays a crucial role in controlling creep strength. Extensive creep rupture tests conducted at temperatures between 650-800°C for up to 60,000 hours demonstrated the alloy's long-term stability, with 105-hour extrapolated creep rupture strengths estimated at 88 MPa at 700°C and 64 MPa at 750°C. Microstructural observations after creep tests and aging confirmed the material's microstructural stability, which is closely linked to long-term creep strength and toughness. While Alloy 617 exhibited higher creep rupture strength at 700 and 750°C, the materials showed comparable performance at 800°C. Thermodynamic calculations and microstructural analysis revealed that the Laves phase in HR6W gradually decreases with increasing temperature, whereas the γ' phase in Alloy 617 rapidly diminishes and almost completely dissolves at 800°C, potentially causing an abrupt drop in creep strength above 750°C. After comprehensive evaluation of creep properties, microstructural stability, and other reported mechanical characteristics, including creep-fatigue resistance, HR6W emerges as a promising candidate for piping and tubing in A-USC power plants.
Proceedings Papers
AM-EPRI2007, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fifth International Conference, 185-196, October 3–5, 2007,
Abstract
View Papertitled, Long-Term Creep Properties and Microstructure of Super304H, TP347HFG and HR3C for Advanced USC Boilers
View
PDF
for content titled, Long-Term Creep Properties and Microstructure of Super304H, TP347HFG and HR3C for Advanced USC Boilers
SUPER304H (18Cr-9Ni-3Cu-Nb-N, ASME CC2328) and TP347HFG (18Cr-12Ni-Nb, ASME SA213) are advanced fine-grained microstructure steel tubes developed for high strength and superior steam oxidation resistance. Their exceptional performance is demonstrated by the longest creep rupture tests, with SUPER304H tested at 600°C for 85,426 hours and TP347HFG at 700°C for 55,858 hours, both maintaining stable strength and microstructure with minimal σ phase formation and absence of other brittle phases compared to conventional austenitic stainless steels. HR3C (25Cr-20Ni-Nb-N, ASME CC2115) was specifically developed for high-strength, high-corrosion-resistant steel tubes used in severe corrosion environments of ultra-supercritical (USC) boilers operating at steam temperatures around 600°C. The longest creep test for HR3C, conducted at 700°C and 69 MPa for 88,362 hours, confirmed its high and stable creep strengths and microstructural integrity across the 600-800°C temperature range. These innovative steel tubes have been successfully installed in the Eddystone No. 3 USC power plant as superheater and reheater tubes since 1991, with subsequent microstructural investigations after long-term service exposure revealing their remarkable performance. The paper provides an up-to-date analysis of the long-term creep rupture properties and microstructural changes of these steels following extended creep rupture and aging processes, highlighting their successful application as standard materials for superheater and reheater tubes in newly constructed ultra-supercritical boilers worldwide.
Proceedings Papers
AM-EPRI2007, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fifth International Conference, 197-207, October 3–5, 2007,
Abstract
View Papertitled, Prediction of the Loss of Precipitation Strengthening in Modern 9-12% Cr Steels – A Numerical Approach
View
PDF
for content titled, Prediction of the Loss of Precipitation Strengthening in Modern 9-12% Cr Steels – A Numerical Approach
The creep resistance of 9-12% Cr steels is significantly influenced by the presence and stability of different precipitate populations. Numerous secondary phases grow, coarsen and, sometimes, dissolve again during heat treatment and service. Based on the software package MatCalc, the evolution of these precipitates during the thermal treatment of the COST 522 steel CB8 is simulated from the cooling process after cast solidification to heat treatment and service up to the aspired service life time of 100.000h. On basis of the results obtained from these simulations in combination with a newly implemented model for evaluation of the maximum threshold stress by particle strengthening, the strengthening effect of each individual precipitate phase, as well as the combined effect of all phases is evaluated - a quantification of the influence of Z-Phase formation on the long-term creep behaviour is thus made possible. This opens a wide field of application for alloy development and leads to a better understanding of the evolution of microstructural components as well as the mechanical properties of these complex alloys.
Proceedings Papers
AM-EPRI2007, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fifth International Conference, 208-219, October 3–5, 2007,
Abstract
View Papertitled, VM12, a New 12%Cr Steel for Application at High Temperature in Advanced Power Plants: Status of Development
View
PDF
for content titled, VM12, a New 12%Cr Steel for Application at High Temperature in Advanced Power Plants: Status of Development
The T/P91 and T/P92 steel grades were developed as a result of a demand of high creep strength for advanced power plants. Nevertheless, their operating temperature range is limited by their oxidation performance which is lower compared with usual 12%Cr steels or austenitic steels. Moreover, the new designed power plants require higher pressure and temperature in order to improve efficiency and reduce harmful emissions. For these reasons, Vallourec and Mannesmann have recently developed a new 12%Cr steel which combines good creep resistance and high steam-side oxidation resistance. This new steel, with a chromium content of 12% and with other additional elements such as cobalt, tungsten and boron, is named VM12. Manufacturing of this grade has been successfully demonstrated by production of several laboratory and industrial heats and rolling of tubes and pipes in several sizes using different rolling processes. This paper summarizes the results of the investigations on base material, including creep tests and high temperature oxidation behavior, but also presents mechanical properties after welding, cold bending and hot induction bending.
Proceedings Papers
AM-EPRI2007, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fifth International Conference, 220-230, October 3–5, 2007,
Abstract
View Papertitled, A New Improvement of Inconel Alloy 740 for USC Power Plants
View
PDF
for content titled, A New Improvement of Inconel Alloy 740 for USC Power Plants
A new nickel-base superalloy, Inconel alloy 740, is being developed for ultra-supercritical (USC) boiler applications operating above 750°C, designed to meet critical requirements for long-term high-temperature stress rupture strength (100 MPa for 10 5 hours) and corrosion resistance (2 mm/2 × 10 5 hours). Experimental investigations revealed key structural changes at elevated temperatures, including γ coarsening, γ' to η transformation, and G phase formation. To enhance strengthening effects and structural stability, researchers conducted a systematic optimization process based on thermodynamic calculations, implementing small adjustments to several alloying elements and designing modified alloy compositions. Comprehensive testing examined the long-term structural stability of these modifications, with investigations conducted up to 5,000 hours at 750 and 800°C, and 1,000 hours at 850°C. Mechanical property and oxidation resistance tests compared the modified alloys with the original Inconel alloy 740, yielding preliminary results that demonstrate minimal modifications can improve stress rupture strength while maintaining corrosion resistance. Microstructural examinations further confirmed the enhanced thermal stability of the modified alloy, positioning Inconel alloy 740 as a promising candidate for USC boiler applications at 750°C or higher temperatures.
Proceedings Papers
AM-EPRI2007, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fifth International Conference, 231-259, October 3–5, 2007,
Abstract
View Papertitled, Materials Qualification for 700 °C Power Plants
View
PDF
for content titled, Materials Qualification for 700 °C Power Plants
Components exposed to the highest temperatures and mechanical loading in 700°C power plants are predominantly manufactured from nickel-based alloys, with ongoing material development for boiler and turbine components in this challenging temperature regime. This paper presents comprehensive investigations of various components, including tubing, membrane walls, and thick-walled structures constructed from nickel-based alloys. Qualification programs for boiler components have demonstrated the applicability of Alloy 617, with similar extensive programs and investigations currently underway for Alloy 263 and Alloy 740. Researchers have conducted detailed experiments and investigations to optimize and qualify welding consumables, aiming to transfer critical knowledge directly to component manufacturing processes. Recognizing the complexity of material performance, the study emphasizes the necessity of long-term material qualification, which extends beyond traditional creep behavior assessments to include detailed investigations of deformation capabilities following extended aging periods. These comprehensive evaluations are crucial for ensuring the reliability and performance of advanced high-temperature power plant components under extreme operational conditions.
1