High gamma prime Ni-based superalloys comprising ≥3.5 % Al are difficult to weld due to high propensity of these materials to weld solidification, heat affected zone liquation, and stress-strain cracking. In this study the root cause analysis of cracking and overview on the developed weldable Ni-based superalloys for repair of turbine engine components manufactured from equiaxed (EA), directionally solidified (DS), and single crystal (SX) materials as well as for 3D AM is provided. It is shown that the problem with the solidification and HAZ liquation cracking of turbine engine components manufactured from EA and DS superalloys was successfully resolved by modification of welding materials with boron and silicon to provide a sufficient amount of eutectic at terminal solidification to promote self-healing of liquation cracks along the weld - base material interface. For crack repair of turbine engine components and 3D AM ductile LW4280, LW7901 and LCT materials were developed. It is shown that LW7901 and LCT welding materials comprising 30 - 32 wt.% Co produced sound welds by GTAW-MA on various SX and DS materials. Welds demonstrated high ductility, desirable combination of strength and oxidation properties for tip repair of turbine blades. Examples of tip repair of turbine blades are provided.

This content is only available as a PDF.