The aspiration to deploy Nb-based alloys as viable upgrade for Ni-based superalloys is rooted in their potential for superior performance in high-temperature applications, such as rocket nozzles and next-generation turbines. However, realizing this goal requires overcoming formidable design hurdles, including achieving high specific strength, creep resistance, fatigue, and oxidation resistance at elevated temperatures, while preserving ductility at lower temperatures. Additionally, the requisite for alloy bond-coatings, to ensure compatibility with coating materials, further complicates the design process. QuesTek Innovations has its Integrated Computational Materials Engineering (ICME) technologies to design a superior performance high-temperature Nb-based superalloy based on solid solution and precipitation strengthening. Additionally, utilizing a statistical learning method from very limited available data, QuesTek engineers were able to establish physics-based material property models, enabling accurate predictions of equilibrium phase fraction, DBTT, and creep properties for multicomponent Nb alloys. With the proven Materials by Design methodology under the ICME framework, QuesTek successfully designed a novel Nb superalloy that met the stringent design requirements using its advanced ICMD materials modeling and design platform.

This content is only available as a PDF.