The microstructural evolution of the MoSiBTiC alloy by rapid solidification and its effect on oxidation and mechanical properties were investigated in this study. A Mo-5Si-10B-10Ti-10C (at%) alloy was produced by a conventional arc-melting technique in an Ar atmosphere, and then it was rapidly solidified by tilt-casting into a rod-shaped copper hearth. Vickers hardness values increased drastically above 1000 Hv due to the microstructure refinement through rapid solidification. They rose from the center toward the outer surface, ranging from about 1100 to 1300 Hv. Interestingly, the oxidation resistance of the rapidly solidified MoSiBTiC alloy at 1100 °C was dramatically improved, probably due to the microstructure refinement effect with ultrafine grains. However, the fracture toughness value of the rapidly solidified MoSiBTiC alloy was about 8 MPa·m1/2, less than half of the cast and heat-treated MoSiBTiC alloy previously reported. Heat treatment and composition optimization will further improve the performance of the rapidly solidified MoSiBTiC alloy.

This content is only available as a PDF.