A significant research and development effort is underway to support the qualification of Alloy 709 as a Class A construction material in the American Society of Mechanical Engineers (ASME) Boiler and Pressure Vessel Code, Section III, Division 5, High Temperature Reactors. This initiative includes a comprehensive Alloy 709 code qualification plan aimed at generating extensive material testing data crucial for compiling the code case data package. The data package is essential in establishing material-specific design parameters for Alloy 709 to be used as Section III, Division 5 Class A construction material for fast reactors, molten salt reactors and gas-cooled reactors. An ASME Section III, Division 5 material code case requires the evaluation of mechanical properties from a minimum of three commercial heats, covering anticipated compositional ranges. A key part of the data package involves fatigue and creep-fatigue testing at elevated temperatures, needed for developing the fatigue design curves and the damage envelope of the creep-fatigue interaction diagram (D-diagram). This paper summarizes the strain-controlled fatigue testing on three commercial heats of Alloy 709 at 760 and 816°C with strain ranges between 0.25% and 3%. The fatigue failure data are used to generate a preliminary fatigue design curve. Additionally, the creep-fatigue testing results at 816°C with tensile hold times of 10, 30, and 60 minutes are presented in support of developing the D-diagram for Alloy 709.

This content is only available as a PDF.