Abstract
Long-term creep rupture tests up to 105 hours at 600℃ and 650℃ were carried out on mod.9Cr- 1Mo steel base metal and weldments from five different materials, consisting of various chemical compositions and heat treatments as well as welding conditions. As a result, positive correlations of creep rupture strength were clarified between the base metal and weldments from the same materials. Microstructural observations and thermokinetic calculations revealed that the strength correlations were attributed to the precipitation strengthening behavior of finely dispersed M23C6 carbides and V-type MX carbonitrides, where their precipitation distribution characteristic in the fine-grained HAZ microstructures partially or almost entirely took over those in base metal. This finding implies that the long-term creep rupture strength of mod.9Cr-1Mo steel weldment might be able to be evaluated as long as the corresponding base metal strength is obtained.