18Cr-9Ni-3Cu-Nb-N steel is widely used for heat exchanger tubes such as super-heaters and reheaters of ultra-super critical power generation boilers. In this study, long-term creep rupture tests were carried out on 18Cr-9Ni-3Cu-Nb-N seamless steel tubes of 7 heat materials, and the specimens of 2 heat materials with different creep rupture strengths were observed by ultra-low voltage scanning electron microscope after creep rupture tests. The results of the investigation of the creep rupture specimens and the coverage ratios of M23C6 on grain boundary were different. The cause of this was estimated to be the difference in B content between the 2 heat materials. Creep rupture tests with different final ST temperatures were also carried out using the same heat material, and it was revealed that the higher final ST temperature, the higher the creep rupture strength. As the final ST temperature is higher, the amount of Nb(C, N) solid solution in the matrix increases, and the amount of precipitation of NbCrN and M23C6 increases during creep, therefore it is assumed that the creep rupture strength increases.

This content is only available as a PDF.