Haynes 282 is a great candidate to meet advanced ultra-super-critical (A-USC) steam conditions in modern coal-fired power plants. The standard 2-step aging treatment has been designed for optimizing microstructure therefore providing excellent mechanical properties. We studied an alternative, more economical, 1-step aging treatment and compared microstructure, tensile properties at 750˚C and deformation behavior. Moreover, three cooling rates from the solution temperature were studied to simulate large-scale components conditions. We found that as much as about 20% of fine spherical intragranular γ' particles were successfully precipitated in all cases. Their average size increased as the cooling rate decreased. All four heat-treated alloys exhibited good mechanical properties at 750˚C with a yield strength well over 620MPa. As expected, the yield strength increased and the ductility decreased as the average γ' size decreased. The alloys exhibited a mixed mode of deformation, though the dominant deformation mechanism depended on the different γ' characteristics. The major operative deformation mechanism could be well predicted by strength increment calculations based on the precipitation strengthening model. Our results suggest that wrought Haynes 282 produced by a more economical 1-step aging treatment may be a reliable candidate for high temperature applications under A-USC conditions.

This content is only available as a PDF.