Abstract
This study aims to examine the effects of grain boundary oxidation and creep on crack initiation and fracture behaviors in cold worked surface layer, under static tensile stresses in air. To determine these effects in relation to percent cold work and hardness scale, cold-rolled plates with a reduction ratios between 10% and 50% were prepared. Uniaxial constant load (UCL) tests were conducted at elevated temperature in air using smooth round bar specimen. UCL tests with a load of 0.9σy (926MPa) at 550°C show that rupture time for all cold- rolled materials were shorter than that of as-received material. From cross-sectional observation after UCL testing, surface crack at grain boundary and voids were observed in as-received material, whereas creep cracks were also observed in cold-rolled materials. This implied that crack initiation was assisted by cold working. Comparing test results with a load reduced to 0.8σy (823MPa), difference of rupture time was expected as a factor of 5 for as-received material, and measured as 2-3 for cold-rolled materials. It was suggested that cold worked layer was more sensitive to creep than base metal.