Abstract
Materials are the key to develop advanced ultra-supercritical (A-USC) steam generators. Operating at temperature up to 760°C and sustained pressure up to 4500 psi. Pressure vessel and piping materials may fail due to creep, oxidation, and erosion. Valves are particularly subjected to loss of function and leakage due to impermeant of the sealing surfaces. New materials, less susceptible to the above damage modes are needed for A-USC technology. Two Ni-based superalloys have been identified as prime candidates for valves based materials. Hardfacing is applied to sealing surfaces to protect them from wear and to reduce friction. Stellite 6 (Cobalt-based alloy) is the benchmark hardfacing owing to its anti-galling properties. However, the latest results tend to indicate that it is not suitable for high pressure application above 700°C. An alternative hardfacing will be required for A-USC. New Ni- and Co- based alloys are being developed for applications where extreme wear is combined with high temperatures and corrosive media. Their chemistry accounts for the excellent dry-running properties of these alloys and makes them very suitable for use in adhesive (metal-to- metal) wear. These new alloys have better wear, erosion, and corrosion resistance than Stellite 6 in the temperature range 800°C ~ 1000°C. As such, they have the potential to operate in A-USC. Velan recently developed an instrumented high temperature tribometer in collaboration with Polytechnique Montreal to characterize new alloys including static and dynamic coefficients of friction up to 800°C. We present herein the methodology that has been devolved to explore the effects of elevated temperature on the tribological behavior of those advanced material systems, with the goal of capturing the basis for the specification, design, fabrication, operation, and maintenance of valves for A-USC steam power plants.