In the present study, the Inconel 617B superalloy welded trial rotor was fabricated by narrow gap tungsten inert gas (NG-TIG) welding and the effects of temperature on fracture toughness of its welded joint were investigated at 650 ℃ and 730 ℃. Fracture toughness (J0.2) of the base metal was much higher than that of the weld metal at the same temperature, which was attributed to its excellent macroscopical plasticity and the interactions of strain localization, misorientation, and coincidence site lattice (CSL) boundaries. For the base metal, the value of J0.2 was higher at 730 ℃ than at 650 ℃, resulting from the appreciable increase in ductility and decrease in strain localization as the temperature increased. For the weld metal, higher temperature (730 ℃) reduced strength but hardly improved plasticity, and the regions of high strain localization uniformly distributed in the weld metal, resulting in completely tearing the whole interface apart and lower fracture toughness of the weld metal.

This content is only available as a PDF.