Abstract
This work deals with the potential of microstructurally based modeling of the creep deformation of martensitic steels. The motivation for the work stems from the ever increasing demand for higher efficiency and better reliability of modern thermal power plants. Service temperatures of 600°C and stress levels up to 100 MPa are currently the typical requirements on critical components. High creep and oxidation resistance are the main challenges for a lifetime 10+ years in steam atmosphere. New materials may fulfill these requirements; however, the save prediction of the creep resistance is a difficult challenge. The model presented in this work takes into consideration the initial microstructure of the material, its evolution during thermal and mechanical exposure and the link between microstructural evolution and creep deformation rate. The model includes the interaction between the relevant microstructural constituents such as precipitates, grain- lath- and subgrain boundaries and dislocations. In addition, the material damage is included into the model. The applicability of the model is then demonstrated on standard creep resistant alloys. Contrary to phenomenological models, this approach can be tested against microstructural data of creep loaded samples and thus provides higher reliability. Nevertheless, potential improvements are discussed and future developments are outlined.