Damage in the grade 91 steel partially transformed zone of weld heat affected zones has historically been associated with many different types of microstructural features. Features described as being responsible for the nucleation of creep damage include particles such as laves phase, coarse M23C6, inclusions, nitrides, or interactions between creep strong and creep week grains, grain boundaries and potentially other sources. Few studies have attempted to link the observations of damage on scales of increasing detail from macro, to micro, to nano. Similarly, assessments are not made on a statistically relevant basis using 2D or 3D microscopy techniques. In the present paper, 2D assessment using scanning electron microscopy (SEM) and quantification techniques such as energy dispersive X-ray spectroscopy (EDS) and electron backscatter diffraction (EBSD) are utilized in combination with 3D serial sectioning of large volumes using plasma focused ion beam milling (P-FIB) and simultaneous EDS to evaluate an interrupted cross-weld creep test. Moreover, the sample selected for examination was from a feature cross-weld creep test made using a parent material susceptible to the evolution of creep damage. The test conditions were selected to give creep brittle behaviour and the sample was from a test interrupted at an estimated life fraction of 60%. The findings from these evaluations provide perspective on the features in the microstructure responsible for the nucleation and subsequent growth of the observed damage.

This content is only available as a PDF.