Modified 9Cr-1Mo alloy steel has been developed over the last few decades and has since gained wide acceptance in the boiler industry for the production of a variety of pressure-critical components, including tubing, piping and headers. The properties of creep-strength enhanced ferritic steels such as grade 91 are critically dependent on manufacturing parameters such as steelmaking, hot deformation, heat treatment and welding. Since the applications for which this material is used impose strict requirements in terms of resistance, corrosion, and creep behavior, poor process control can severely compromise the service behavior. This work discusses the impact of total deformation during the rolling process, and heat treatment parameters on time-independent and time-dependent properties for grade 91. For this study, two heats with similar chemical composition were produced with different reduction ratios: to which, several normalizing and tempering combinations were applied. For each combination, the microstructure was characterized, including evaluation of segregation by metallographic examination, and analysis of secondary phase precipitates by means of X-ray powder diffraction. Mechanical testing and creep testing were performed. A comparison of results is presented, and recommendations on the optimal process parameters are provided to ensure reliable performance of grade 91 material.

This content is only available as a PDF.