Abstract
NiAl precipitates with the B2 structure are known to be effective in increasing the strength of ferritic heat-resistant steels. The strengthening mechanism by the NiAl precipitates was examined using Fe-21Al-2Ni and Fe-23Al-6Ni (at%) single crystals. As a result, the difference in primary slip system between the bcc matrix and the NiAl precipitates is responsible for strong hardening. The B2-NiAl phase was precipitated in the bcc matrix satisfying the cube-on-cube orientation relationship with small misfit strain. The primary slip direction of the bcc matrix and the NiAl precipitates are <111> and <001>, respectively. However, in the ferritic alloys, the NiAl precipitates were cut by paired 1/2<111> dislocations in the bcc matrix, resulting in the hardening. The size and volume fraction of the NiAl precipitates strongly influenced the strength. The stress increase by the NiAl precipitates was also discussed quantitatively based on the precipitation hardening theory. Based on the experimental results obtained by the single crystal study, we developed Fe-Al-Ni-Cr-Mo ferritic heat-resistant alloy containing the NiAl precipitates. The alloy exhibited excellent creep properties at 923 K.