In downstream oil industry applications, high-temperature sulfidation corrosion is generally caused by sulfur species coming from the crude; additionally, naphthenic acids or hydrogen can considerably worsen the corrosivity of the environment. During plant operations, several events may occur that boost the severity of corrosion: high feedstock turnover, with increasing “active” sulfur species; skin temperature rise due to the increasing insulation effect of the scale, generating an over-tempering of the material and possible degeneration into creep conditions. Thor115 is a ferritic steel with 11% chromium content to resist sulfidation. It has excellent creep properties for high temperature environments: higher allowable stresses than grade 91, keeping the same manufacturing and welding procedures. At the same time, it has the characteristics of ferritic steel, ensuring enhanced thermal conductivity and lower thermal expansion compared to austenitic steels. Comparative corrosion tests between Thor115 and other ferritic steels typically used in this industry (e.g., grade T/P5 and grade T/P9) have been carried out to simulate different corrosive conditions, confirming the superior properties of Thor115 relative to other ferritic grades. For these reasons, Thor 115 is a suitable replacement material for piping components that need an upgrade from grade T/P9 or lower, in order to reduce corrosion rate or frequency of maintenance operations.

This content is only available as a PDF.