Metallurgical factors affecting the fusion boundary failure and damage mechanism of DMWs (Dissimilar Metal Welds) between the CSEF (Creep Strength Enhanced Ferritic) steels and austenitic steels were experimentally and theoretically investigated and discussed. Long-term exservice DMWs up to 123,000 hours were investigated; the precipitates near the fusion boundary were identified and quantitatively evaluated. Comparing with the other generic Ni-based weld material, MHPS original filler metal HIG370 (Ni bal.-16Cr-8Fe-2Nb-1Mo) showed superior suppression effect on fusion boundary damage of DMWs, which was verified by both of the microstructure observation and thermodynamic calculation. Based on the microstructure observation of crept specimen and ex-service samples of DMWs, temperature, time and stress dependence of fusion boundary damage of DMWs were clarified. Furthermore, fusion boundary damage morphology and mechanism due to precipitation and local constituent depletion was discussed and proposed from metallurgical viewpoints.

This content is only available as a PDF.