Nimonic 263 alloy was selected for gas turbine combustor transition piece due to its excellent high temperature mechanical performance. In present work, Nimonic 263 alloy plate with thickness of 5mm was welded using 263 filler metal by GTAW, then post weld heat treatment of 800℃/8h/air cool was carried out. The hardness and impact toughness of welded joints were measured, and the microstructure evolution after aging at 750℃ for 3000h was investigated by scanning electron microscopy(SEM). The results show that, during the aging process, the hardness of weld metal increases firstly and then decreases. The impact toughness decreases significantly at first and then increase. Furthermore, some fluctuations can be detected in hardness and impact toughness after long-term thermal exposure. The significant decrease in the impact toughness of the aged welded joints mainly results from the precipitation of η phase around grain boundary and intergranular MC phase. The hardness of weld metal increases due to the precipitation of more carbides and γ′ phase after 1000h aging, then decreases owing to the growth of γ′ phase after 3000h aging.

This content is only available as a PDF.