Abstract
The Advanced Ultrasupercritical (A-USC) power plants are aimed to operate at steam inlet temperatures greater than 700°C; consequently, a complete materials overhaul is needed for the next-generation power plants. HAYNES 282, a gamma-prime strengthened alloy, is among the leading candidates because of its unique combination of properties, superior creep and LCF strength, fabricability and thermal stability. It is currently being evaluated in wrought and cast forms for A-USC turbine rotors, casings, boiler tubings, header, and valves. The candidate materials for A-USC applications not only require oxidation resistance for steam cycles but fireside corrosion resistance to coal ash is also of an extreme importance. In order to study the effect of both environments on the performance of 282 alloy, the alloy was exposed for extended periods in various oxidizing environments, such as air, air plus water vapor (10%), and 17bar steam up to 900°C. The fireside corrosion resistance of 282 alloy was evaluated at 700°C in synthetic coal ash and at 843°C in alkali salt deposits in a controlled gaseous environment.